
Unsupervised intrinsic calibration
of depth sensors via SLAM

Alex Teichman Stephen Miller Sebastian Thrun

Abstract—We present a new, generic approach to the calibra-
tion of depth sensor intrinsics that requires only the ability to run
SLAM. In particular, no specialized hardware, calibration target,
or hand measurement is required. Essential to this approach
is the idea that certain intrinsic parameters, identified here as
myopic, govern distortions that increase with range.

We demonstrate these ideas on the calibration of the popular
Kinect and Xtion Pro Live RGBD sensors, which typically exhibit
significant depth distortion at ranges greater than three meters.
Making use of the myopic property, we show how to efficiently
learn a discrete grid of 32,000 depth multipliers that resolve
this distortion. Compared to the most similar unsupervised
calibration work in the literature, this is a 100-fold increase in the
maximum number of calibration parameters previously learned.

Compared to the supervised calibration approach, the work
of this paper means the difference between A) printing a poster
of a checkerboard, mounting it to a rigid plane, and recording
data of it from many different angles and ranges - a process
that often requires two people or repeated use of a special easel
- versus B) recording a few minutes of data from unmodified,
natural environments. This is advantageous both for individuals
who wish to calibrate their own sensors as well as for a robot
that needs to calibrate automatically while in the field.

I. INTRODUCTION

This work was originally motivated by a practical need.
During an attempt to automatically discover the transform
between two rigidly-mounted RGBD sensors, we found that,
though the extrinsics were correct, the actual overlay of the
two pointclouds contained significant disagreements. While
the depth data from the Kinect or Xtion Pro Live sensors tends
to be accurate out to about three meters, systematic warping of
the depth data substantially degrades accuracy with increasing
distance out to the maximum range of ten meters. The exact
origin of this distortion is unknown due to the closed nature
of the system design, and, as we will show, varies from one
sensor to the next. Resolving this issue could improve the state
of the art in any area that makes use of these sensors.

One might wonder if this is actually a valuable problem
to solve. Might PrimeSense just release a new version of
their software or hardware that dramatically improves the
calibration? Due to the closed nature of their system it is hard
to know if this distortion is intrinsically difficult to resolve
or if they have only optimized for the close-range use case
that they primarily care about. While it appears their focus
is currently miniaturization rather than accuracy improvement
[1], the answer is: Yes, this might happen. However, we
can pose a more general depth sensor calibration algorithm
template, of which PrimeSense distortion calibration is just one
example. In this way, we can make a lasting contribution while

R
a
w

se
n

so
r 

d
a
ta

In
tr

in
si

c 
ca

li
b

ra
ti

o
n

vi
a
 S

L
A

M

C
a
li

b
ra

te
d

se
n

so
r 

d
a
ta

Fig. 1. Overview of our method calibrating an Asus Xtion Pro Live. Single
frames of sensor data (red) are shown overlaid on an accurate reference map.
Corner warping at close range and gross depth errors at long range are both
corrected. Results for the Kinect are analogous.

simultaneously solving the community’s more immediate need
for a depth distortion solution for the popular PrimeSense
sensors.

The intuition behind our approach is simple. Using SLAM,
one can build a map with relatively accurate close range data,
then compare inaccurate long range data with the expected
measurements from the map. For example, say the corners of
a depth camera report ranges that are consistently 10% too far
and we run SLAM looking at a wall from different distances.
If the map is built with a maximum range of 2m, then the wall
in the map will be wrong by at most 0.2m, and at 10m the
observed discrepancy between the map and the measurement
is 0.8m, close to the actual error. This information can be used
to step the intrinsics towards their optimal values.

In summary, the primary contributions of this paper are that
we
• propose a general, unsupervised intrinsic calibration ap-

proach (CLAMS: Calibrating, Localizing, and Mapping,
Simultaneously) appropriate for many different depth



sensors and intrinsic calibration parameters.
• identify the myopic property of certain depth sensor

intrinsics and show how to use it to fit calibration models
with very large numbers of parameters.

• demonstrate these ideas on the calibration of the pop-
ular Kinect and Xtion Pro Live sensors using only a
few minutes of recordings from unknown, unmodified
environments.

Related work is deferred to the end so that comparisons
with our method can be drawn.

II. THE MYOPIC PROPERTY

A depth sensor intrinsic parameter is termed myopic if an
erroneous setting of that parameter generates absolute error
that increases with distance from the sensor. Many depth
sensor intrinsic parameters have this property.

z

f

u

x

x

y

d

θ

Fig. 2. Standard camera model (left) and laser range finder beam angle
(right). Absolute error generated by incorrect focal length or incorrect beam
angle grows with range in both these models; these are myopic intrinsic
parameters.

Consider, for example, the standard pinhole camera model
used with depth cameras, shown in Figure 2. If an incorrect
focal length f ′ is used instead of f , the resulting depth point
appears at (x′, y′, z′) instead of (x, y, z). Because z > 0, the
absolute error can be written as

e =
√

(x− x′)2 + (y − y′)2

= z

√
(u/f − u/f ′)2 + (v/f − v/f ′)2.

So, absolute error increases linearly with distance from the
sensor; focal length is linearly myopic. There is an analo-
gous linear relationship for laser range finder beam angles.
Assuming for simplicity that the beam lives in two dimensions,
the absolute error resulting from using an incorrect angle θ′

instead of θ is

e = d
√
(cos θ − cos θ′)2 + (sin θ − sin θ′)2,

where d > 0 is the reported distance.
An example of a non-myopic intrinsic parameter is a

constant depth offset term such as that used in Velodyne beam
calibration [14], resulting from fixed timing offsets in the time-
of-flight circuitry.

III. THE GENERIC CLAMS APPROACH

The most generic version of CLAMS, hinted at in [14], is
the optimization

minimize
T,C

f(T,C)

over a trajectory T and a calibration C, with a function f
that measures some aspect of map error. Ideally, f would be
convex in both parameters simultaneously, but unfortunately
this case seems rare. Instead, we typically must settle for
an approximate alternating optimization, where the objective
function used for SLAM is different than the one used for
calibration; convergence is not guaranteed. This approach
relies on the reasonable assumption that improvements in
calibration will result in improved SLAM solutions and vice
versa.

Previous works (in which T was assumed to be given) have
suggested solving for the calibration using various measures of
pointcloud co-locality [18, 14]. The myopic property suggests
a variation. Iteratively,

1) holding the calibration fixed, solve for the trajectory
using SLAM.

2) construct a pointcloud - the map - from the trajectory
using only relatively accurate short range depth data.

3) optimize the calibration using expected measurements
generated from the map.

The specific form of step 3 could vary depending on what
parameters are being calibrated. For example, optimization
of the focal length of a depth camera or beam angle of a
laser could be simple grid search where the objective function
measures the average depth discrepancy between the measured
depth images and the expected depth images generated from
the map. In other cases, such as estimating a per-pixel depth
multiplier, maximum likelihood estimation of the intrinsic
parameters can be done in closed form. It is this latter case
that we will explore in the following sections.

IV. DEPTH DISTORTION IN PRIMESENSE RGBD SENSORS

Here we focus on the Asus Xtion Pro Live and Microsoft
Kinect, referred to collectively as “PrimeSense sensors” as
they are both derived from the same design by PrimeSense.

Fortunately, the absolute depth error in question increases
with range, which indicates there is an unmodeled myopic
intrinsic parameter. This can be seen by observing depth data
of a flat wall as seen from above at different distances. At
close range, the data is highly planar, and at longer ranges
significant warping is evident. It can further be verified with
a tape measure that the absolute position of the plane tends
to be accurate at close range. See Figure 3 for a characteristic
example of this distortion.

To model the effects of this distortion, one could try using
a depth multiplier image, where each element of a raw depth
image must be multiplied by a value that depends on the
image coordinates. Like focal length and beam angle, the
elements of a depth multiplier image are linearly myopic
parameters. Consider a single depth pixel which reports a value



1m

3m

5m

Fig. 3. Raw PrimeSense data of a flat wall, displayed to scale, seen from
above. It is this type of distortion that we calibrate out in Section IV.

of z̃ > 0 and the one element m of the depth multiplier image
that applies to it. Using an incorrect value m′ instead of m
generates a point (x′, y′,m′z̃) rather than the correct point
(x, y,mz̃); the resulting error is

e =
√

(x− x′)2 + (y − y′)2 + (mz̃ −m′z̃)2

= z̃

√(
um

f
− um′

f

)2

+

(
vm

f
− vm′

f

)2

+ (m−m′)2.

Empirically, however, the distortion appears to be super-
linear, so we use several depth multiplier images in different
range brackets. Formally, the distortion model that we will fit
is

z =
∑
i

1{z̃ ∈ [zi, zi+1)}Di(u, v)z̃,

where z̃ is the raw measurement reported by the sensor, the
Di are the individual depth multiplier images, and z0, z1, ..., z5
are 0, 2, ..., 10. To avoid discrete jumps in the calibrated data at
runtime, we apply linear interpolation along the beam. Finally,
we discretize the depth multiplier images into bins of 8 × 6
pixels. At 640×480 resolution and a maximum range of 10m,
this results in 32,000 parameters.

A. Algorithm

Making use of the myopic property, the outline of the
algorithm is to

1) collect several minutes of raw sensor data containing
sufficient coverage in all regions of the view frustum.

2) find the sensor trajectory with SLAM.
3) construct a pointcloud (the map) using only sensor data

that was seen from less than two meters away.
4) harvest training examples from the map and fit the

depth multiplier images in closed form using maximum
likelihood estimation.

It is probably beneficial to iterate on steps 2-4, as improve-
ments to the calibration model should produce improvements
in the SLAM trajectory. For this particular problem, however,
it is possible to produce a reasonable solution in a single
iteration, probably because PrimeSense data is accurate at

close range and our SLAM solution works sufficiently well
with the raw sensor data. Details on each of the steps follow.

Data collection - Calibration requires training data in all
parts of the view frustum that one cares about. In our case,
we wish to calibrate the entire view frustum, so we walk back
and forth along an approximately ten meter path and wave the
sensor around at random so that the edges and corners will
get sufficient data even at long range. Walking back and forth
over the same path allows the SLAM algorithm to find loop
closures that improve the final accuracy of the map. Typically,
several sequences like this are collected in different locations,
resulting in a few minutes of training data. In our experiments,
we use natural, unmodified office environments.

SLAM - Our SLAM approach is similar to that of RGBD-
SLAM [6, 5] or RGB-D Mapping [9, 8], but with some modifi-
cations. Edges in the graph are determined with a grid search
that considers depth, color, and smoothed image gradients,
with the relative weighting chosen by cross validation. After
the SLAM solver runs, we remove edges that have high error
and edges that have no error. The latter are edges that are
unconfirmed by loop closures. We take the largest connected
subgraph that results. The general graph optimization package
g2o [13] is used as the core SLAM solver.

Map building - Once a trajectory is known, we build a
pointcloud referred to as the map using only close range data.
Specifically, for each pose in the trajectory, we project into the
map each point that was observed from less than two meters.
In this way, we can be reasonably confident in the accuracy
of the map. To keep the number of points manageable, we
use a voxel grid filter with 1cm resolution. See Figure 4 for
example maps used for calibration.

Model fitting - Each parameter is fit independently assum-
ing the measured depth z̃ is generated by applying a multiplier
w to the ground truth depth z, then adding Gaussian noise.
Formally, we have

P(z̃|z, w) = η exp

(
−(z̃ − wz)2

2σ

)
.

This results in a maximum likelihood estimate of

maximize
w

M∏
i=1

P(z̃i|zi, w)

minimize
w

M∑
i=1

(z̃i − wzi)2

w =

∑
i ziz̃i∑
i z

2
i

.

As some parameters may not get any training examples, we
assume the existence of a single example with zi = z̃i = 1.
At runtime, we are interested in predicting ground truth depth
from measured depth, so we populate the appropriate bin of
the appropriate depth multiplier image with 1/w.

To collect a training set, we iterate over all frames in the
trajectory and all points in the frame, recording measured
range and map range. For a given frame and pixel location,
z̃i is just the range that was reported by the sensor. The map



Fig. 4. Example maps used for calibration.

range zi is determined by averaging the range of nearby points
in the map. Specifically, we define a cone that contains the
3D point and a 2cm radius around it in the (x, y) plane, i.e.
parallel to the camera plane. The mean range of points in the
cone with less than 20% deviation from the measured range z̃i
is used for zi. The training example is rejected if the standard
deviation of these points is greater than 3cm or if the map
points are near the edge of the map frame.

This filtering helps attenuate undesirable effects of occlusion
and slight angular errors in the trajectory. Moreover, if the view
of a surface is oblique and the map contains minor SLAM
errors, the filtering will tend to set the expected range zi such
that these errors average out. Points at the edge of the map
are rejected because the mean will tend to be inaccurate if the
view is oblique.

V. PRIMESENSE CALIBRATION EVALUATIONS

We present two different quantitative evaluations along with
qualitative results demonstrating that the CLAMS algorithm of
Section IV resolves the depth distortion in PrimeSense sensors.
All experiments use the RGB-to-depth mapping provided by
the factory. Quantitative experiments focus on the Xtion Pro
Live sensors xpl00 and xpl01, with qualitative results
shown for several more sensors, including three Kinects, in
Section V-C. SLAM maps were checked by eye to confirm
no obvious trajectory errors existed. Unfortunately, even using
state of the art techniques, mapping failures do still sometimes
occur.

A. Flat wall evaluation

Our first evaluation is fairly simple: When the sensor sees
only a flat wall, how flat is its output?

We calibrated xpl00 using about 4.5 minutes of raw data as
described in Section IV-A. Example maps used for calibration
are shown in Figure 4. The test sequence was collected by
walking a handheld sensor towards a large, flat wall, starting
from a distance of about five meters. The field of view of the
sensor included only the wall, so we know that ideal sensor
output should have all points in each view lying on a plane.

To evaluate planarity, we fit a normal vector n and offset
b using a RANSAC method followed by refinement using
SVD on the inliers. RMS error,

√
1
M

∑
i(n

T pi − b)2, was
recorded for all points for every 15th frame in the sequence,
with and without the depth multiplier images learned via
CLAMS. Results are shown in Figure 5. The sensor output
is substantially more planar using the learned calibration.

Even with calibration, RMS error increases somewhat with
range. In Figure 5, calibrated data at 5m is highly planar, but
forms a thicker line than at close range. Depth discretization
inherent in the raw sensor data, visualized in Figure 6, gener-
ates most of this error.

The learned depth multiplier image for the 4-6m slice is
shown in Figure 7. It is possible to see the correspondence
between the model and the distortion in the uncalibrated
data. In particular, the top left and bottom left corners of the
multiplier image show that the raw data needs to be pulled
closer to the sensor, corresponding to two most noticeable
“peeling” effects at five meter range in Figure 6.

This experiment is easy to understand, visualize, and quan-
titatively evaluate, but can only evaluate out to five meters
due to the requirement of having a very large plane available.
Further, if one considers this experiment in isolation, it is
unlikely but possible that while the calibrated output is planar,



Raw

sensor

data

Calibrated

sensor

data

Fig. 5. Flat wall evaluation. Quantitatively, deviation from planarity is
substantially reduced using the intrinsics learned with CLAMS. Qualitative
results show sensor data of the flat wall as seen from above. Applying the
learned calibration produces planar output; the increase in thickness and RMS
error at long range in the calibrated data can be attributed to the depth
discretization inherent in the sensor, visualized in Figure 6.

Fig. 6. Alternate view of the raw sensor data shown in the upper right
of Figure 5, showing the same flat wall from approximately above. The left
side of the image is the left side of the field of view of the sensor. Depth
discretization is obvious at this angle. This discretization results in “fuzzier”
depth data at longer ranges, even when the calibration is correct.

Fig. 7. Learned depth multiplier image for sensor xpl00. White indicates
a depth multiplier of one, full blue of 0.9, and full red of 1.1. The top left
and bottom left corners of the multiplier image show that the raw data needs
to be pulled closer to the sensor, corresponding to the two most noticeable
“peeling” effects in raw sensor data at five meters in Figure 6.

the actual plane is incorrect. These drawbacks are eliminated
in the following evaluation.

B. Unseen test maps evaluation

In this evaluation, we make use of SLAM to generate test
data. This gives us confirmation independent of Section V-A
that the calibration procedure is working. Additionally, we
show that the required amount of calibration data is 2-3
minutes and that the results are consistent across varying
calibration datasets. Both xpl00 and xpl01 are evaluated
in this section.

Specifically, we constructed several maps for each sensor1

using steps 2 and 3 from Section IV-A and assigned them
randomly to calibration and testing sets. Because only close
range data is used and maps are checked for obvious errors,
we can have reasonable confidence in the accuracy of these
maps. At calibration time, random subsets of the calibration
maps were selected and used for calibration, followed by an
evaluation on all test maps. For each observed depth pixel, we
computed the best distance estimate from the map using the
filtering of Section IV-A. As in Section V-A, RMS error was
measured for both raw and uncalibrated sensor data.

Error measurement in this experiment requires some consid-
eration. In Section V-A, despite qualitative results that show
that the calibration restored the planarity of the wall, RMS
error still increased with range due to depth discretization.
Here, we have an analogous but somewhat worse situation:
Total depth error includes SLAM trajectory error, occlusion
misprediction, depth discretization, and depth distortion. As a
result, even the optimal intrinsics cannot produce 100% error
reduction.

What we can show from the quantitative results is that
A) error reduction is significant and stable over different
sets of calibration maps, and B) one needs 2-3 minutes of
calibration data to expect to mostly saturate performance,
though increasing amounts of data are still beneficial. These
quantitative results are shown for both sensors in Figure 10.

Qualitative results for both sensors are shown in Figure 8.
Detailed discussion is provided in the caption.

1Nine for xpl00; seven for xpl01.



xpl00

raw calibrated

xpl01

raw calibrated

(C)

(A)
(B)

(D)

Fig. 8. Qualitative results showing the effects of calibration overlaid on reference maps. Best viewed on-screen and zoomed in. These visualizations show an
unseen test map with depth data from a single frame overlaid in red; an ideal sensor would produce red points that match up with the map points. Numeric
annotation of arrows in the pointclouds are of Euclidean distance to the sensor in meters. (A) Two different perspectives of the same scene show that the
bottom right corner of raw sensor data from xpl00 is too close to the sensor and must be pushed further away to produce a flat wall. (B) Similarly, here
we have two different perspectives of the same scene for xpl01. In this sensor, the bottom right corner has the opposite distortion - it must be pulled in to
produce a flat wall. This can be confirmed in the depth multiplier images in Figure 9. (C) In this scene, xpl01 was held upside down, so the two circled
regions correspond to the bottom corners of the depth multiplier image in Figure 9. (D) Even at close range, corner warping can be observed in the raw data
and suppressed with CLAMS.



kinect00 kinect01 kinect02 xpl00 xpl01 xpl02 xpl03

Fig. 9. Depth multiplier images for several sensors following the same coloring scheme as in Figure 7. The significant variation shown here validates the
need for independent sensor calibration. xpl03 is a newer version of the Xtion Pro Live sensor, identifiable by its square rather than oval projector aperture.
xpl01 and xpl02 are perhaps from the same batch.

Fig. 10. Depth error reduction evaluated on unseen test maps. Depth error
includes SLAM trajectory error, occlusion misprediction, depth discretization,
and depth distortion; thus, 100% error reduction is not possible even if the
exact depth distortion model were available. We can conclude from this
plot that A) error reduction is significant and stable over different sets of
calibration maps, and B) one needs 2-3 minutes of training data before
accuracy improvement becomes slow. Sensors xpl00 (top) and xpl01
(bottom) are shown.

C. Sensor variation

To validate the need for individual sensor calibration, here
we show that all PrimeSense sensors do not share the same
set of intrinsic parameters. We calibrated several different
sensors, confirmed their error reduction and qualitative results
were reasonable, and plotted the 4-6m depth multiplier image
for each in Figure 9. Only xpl01 and xpl02 seem similar
enough that they might share the same model; they are perhaps
from the same manufacturing batch. The works of Smisek
et al. [19] and Herrera C. et al. [10] discuss vertical banding
in the depth distortion, which we recover here in all the sensors
we tested.

D. Timing results

Runtime of the calibration procedure is asymptotically lin-
ear in the amount of calibration data. At a high level, the
algorithm is just SLAM followed by an update of the distortion
model, run for S different sequences. Crucially, the length
of each of these sequences is bounded by a constant; each
sequence need only include data out to the maximum range
of ten meters. For a single sequence, the runtime of both
SLAM and model updating depends only on the length of
the sequence in question, and therefore is also bounded by
a constant. Thus, the calibration procedure as a whole is just
O(S); if you decide you need a more accurate calibration, you
can simply collect more bounded-length sequences and expect
that runtime will grow only linearly.

Given the sensor trajectory, the average calibration time in
Section V-B was ten minutes on a Xeon X5650. However,
our implementation of SLAM is relatively slow and full
sensor calibration including SLAM for several sequences is
generally an overnight procedure. We expect that this can be
substantially improved, both with code optimizations for the
handheld calibration scenario and by making use of additional
problem data for other scenarios.

Applying the calibration model to an individual 640× 480
depth image takes about 2ms on a modern laptop with an i7-
3820QM processor, making this distortion model practical to
use online.

VI. RELATED WORK

We are unaware of any previous work on depth sensor intrin-
sic calibration that requires only handheld recordings of depth
sensor data in unmodified environments. Broadly speaking,
related work either makes use of specialized calibration targets
or applies to different calibration problems.

Depth distortion calibration methods using calibration tar-
gets cover RGBD sensors such as the Kinect or Xtion Pro
Live and time-of-flight sensors such as the PMDTechnologies
device. Herrera C. et al. [10] use a checkerboard attached to
a plane to acquire calibration data; this is probably the most
similar work in the supervised category, as they make use of a
similar depth distortion model. Zhang and Zhang [20] largely
discuss the RGB to depth camera transform, but also consider
a simple depth distortion model with two parameters. Time-of-
flight (ToF) sensor intrinsic calibration using calibration targets
has been well-studied on its own [15, 16, 7] and in the context
of sensor fusion [21, 11]. ToF distortion models typically take



a somewhat different form, where the depth distortion is taken
to be a function of only distance, rather than distance and
image location as in this work and Herrera C. et al. [10].

Unsupervised calibration methods exist for several related,
but different problems. Most similar in this category is prob-
ably the work of Levinson and Thrun [14], who demonstrate
automatic calibration of the beam angles, distance-response
functions, and sensor-to-vehicle extrinsics of a Velodyne laser
range finder mounted on an autonomous vehicle. However,
they assume the relative vehicle trajectory is provided by a
high accuracy GPS / IMU / wheel encoder system; this is a
reasonable assumption for calibration of autonomous driving
systems, but does not hold for hand-held sensors or most
robots. Similarly, Sheehan et al. [18] demonstrate unsupervised
calibration of a custom Velodyne-like sensor, making use of
the known spinning motion of the sensor base to automatically
calibrate beam angles, relative laser positions, and timing
offsets. In a similar vein, there are several unsupervised meth-
ods that demonstrate extrinsic calibration between multiple
depth sensors by making use of sensor motion [2, 17]. In the
realm of RGB-only cameras, Carrera et al. [3] show extrinsic
calibration between several cameras on a moving platform,
and Civera et al. [4] compute camera intrinsics using structure
from motion. Finally, in a more robotics-specific application,
Kümmerle et al. [12] solve for sensor mount position and
kinematic parameters such as wheel radius during SLAM.

Among unsupervised methods for different calibration tasks,
the largest number of parameters calibrated of which we are
aware is 192, where two beam angles and one range offset is
computed for each of 64 Velodyne beams [14]; other works in
this category tend to calibrate on the order of 10 parameters.
The objective function used in [14] is essentially minimization
of point to plane distance and encodes a similar intuition as
the “crispness” objective function of [18]. Optimization is grid
search where each change to a parameter requires updating
nearest-neighbor lookup structures and surface normals. Using
this same approach with our 32,000 parameters rather than 192
is probably infeasible. Similarly, it is not clear that optimizing
the non-convex “crispness” objective function with so many
more parameters would be tractable. It is the use of the myopic
property and a simple generative model that allow us to find
a good fit for two orders of magnitude more parameters in a
reasonable amount of time.

VII. CONCLUSION

We have presented a generic approach to depth sensor
calibration which requires no special calibration targets or
measurements of the environment, just the ability to run
SLAM. Further, we have shown how this approach can be
applied to resolve the depth distortion inherent in the Xtion
Pro Live and Kinect sensors. From a practical perspective, this
result makes RGBD calibration require that a user only record
a few minutes of data from natural environments - a substantial
improvement over what used to be an onerous process.

ACKNOWLEDGMENTS

Thanks to Jesse Levinson for the name “CLAMS” and
to Jake Lussier for the voiceover of our video submission.
Stephen Miller is supported by the Stanford Graduate Fellow-
ship and the Hertz Foundation Google Fellowship.

REFERENCES

[1] PrimeSense unveils Capri, December 2011. URL http://www.
primesense.com/news/primesense-unveils-capri/.

[2] Jonathan Brookshire and Seth Teller. Extrinsic calibration from
per-sensor egomotion. In RSS, 2012.

[3] Gerardo Carrera, Adrien Angeli, and Andrew J. Davison.
SLAM-based automatic extrinsic calibration of a multi-camera
rig. In ICRA, 2011.

[4] Javier Civera, Diana R. Bueno, Andrew J. Davison, and J. M. M.
Montiel. Camera self-calibration for sequential bayesian struc-
ture from motion. In ICRA, 2009.

[5] Felix Endres, Jurgen Hess, Nikolas Engelhard, Jurgen Sturm,
Daniel Cremers, and Wolfram Burgard. An evaluation of the
RGB-D SLAM system. In ICRA, 2012.

[6] Nikolas Engelhard, Felix Endres, Jurgen Hess, Jurgen Sturm,
and Wolfram Burgard. Real-time 3D visual SLAM with a hand-
held RGB-D camera. In RGB-D Workshop on 3D Perception
in Robotics at the European Robotics Forum, 2011.

[7] Stefan Fuchs and Gerd Hirzinger. Extrinsic and depth calibra-
tion of ToF-cameras. In CVPR, 2008.

[8] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and
Dieter Fox. RGB-D mapping: Using depth cameras for dense
3D modeling of indoor environments. In ISER, 2010.

[9] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and
Dieter Fox. RGB-D mapping: Using Kinect-style depth cameras
for dense 3D modeling of indoor environments. In IJRR, 2012.

[10] Daniel Herrera C., Juho Kannala, and Janne Heikkila. Joint
depth and color camera calibration with distortion correction.
In PAMI, 2012.

[11] Y.M. Kim, D. Chan, C. Theobalt, and S. Thrun. Design
and calibration of a multi-view tof sensor fusion system. In
Computer Vision and Pattern Recognition Workshops, 2008.

[12] Rainer Kümmerle, Giorgio Grisetti, and Wolfram Burgard.
Simultaneous calibration, localization, and mapping. In IROS,
2011.

[13] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Kono-
lige, and Wolfram Burgard. g2o: A general framework for graph
optimization. In ICRA, 2011.

[14] Jesse Levinson and Sebastian Thrun. Unsupervised calibration
for multi-beam lasers. In ISER, 2010.

[15] Derek Lichti and Changjae Kim. A comparison of three geo-
metric self-calibration methods for range cameras. In Remote
Sensing, 2011.

[16] Marvin Lindner, Ingo Schiller, Andreas Kolb, and Reinhard
Koch. Time-of-flight sensor calibration for accurate range
sensing. In Computer Vision and Image Understanding, 2010.

[17] Will Maddern, Alastair Harrison, and Paul Newman. Lost in
translation (and rotation): Rapid extrinsic calibration for 2D and
3D LIDARs. In ICRA, 2012.

[18] Mark Sheehan, Alastair Harrison, and Paul Newman. Self-
calibration for a 3D laser. In IJRR, 2012.

[19] Jan Smisek, Michal Jancosek, and Tomas Pajdla. 3D with
kinect. In IEEE Workshop on Consumer Depth Cameras for
Computer Vision, 2011.

[20] Cha Zhang and Zhengyou Zhang. Calibration between depth
and color sensors for commodity depth cameras. In Interna-
tional Workshop on Hot Topics in 3D, 2011.

[21] Jiejie Zhu, Liang Wang, Ruigang Yang, and James Davis.
Fusion of time-of-flight depth and stereo for high accuracy depth
maps. In CVPR, 2008.

http://www.primesense.com/news/primesense-unveils-capri/
http://www.primesense.com/news/primesense-unveils-capri/

	Introduction
	The myopic property
	The generic CLAMS approach
	Depth distortion in PrimeSense RGBD sensors
	Algorithm

	PrimeSense calibration evaluations
	Flat wall evaluation
	Unseen test maps evaluation
	Sensor variation
	Timing results

	Related work
	Conclusion

