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Abstract— We consider the perceptual challenges inherent in
the robotic manipulation of previously unseen socks, with the
end goal of manipulation by a household robot for laundry. The
task poses challenging problems in modeling the appearance,
shape and configuration of these textile items that tend to
exhibit high variability in texture, design, and style while being
highly articulated objects.

At the heart of our approach is a holistic model of shape
and appearance that facilitates manipulation of those delicate
items—starting even from bunched up instances. We describe
novel approaches to two key perceptual problems: (i) Inferring
the configuration of the sock, and (ii) determining which socks
should be paired together.

Robust inference in our model is achieved by strong texture
based classifiers that, alone, are powerful enough to solve prob-
lems such as inside-out detection. Finally, a reliable prediction
of the overall configuration is achieved by combining local cues
in a global model that enforces structural consistency.

We perform an extensive evaluation of different feature types
and classifiers and show strong performance on each subtask
of our approach. Finally, we illustrate our approach with an
implementation on the Willow Garage PR2—a general purpose
robotic platform.

I. INTRODUCTION

Since Rosie the Robot first debuted on television’s “The
Jetsons” in 1962, the futuristic image of a personal robot
autonomously operating in a human home has captivated
the public imagination. Yet, while robots have become an
integral part of modern industrial production, their adoption
in these less well-defined and less structured environments
has been slow. Indeed, the high variability in, for example,
household environments, poses a number of challenges to
robotic perception and manipulation.

The problem of robotic laundry manipulation exemplifies
this difficulty, as the objects with which the robot must
interact have a very large number of internal degrees of
freedom. This presents a number of unique perceptual chal-
lenges. In this work, we examine the perceptual aspects
of one particular application: bringing scattered, arbitrarily
configured socks into organized pairs.

As many of the difficulties associated with this task are
shared with all clothing articles, we believe the strategies de-
veloped here will prove useful well beyond their immediate
scope.

Socks are extremely irregular, both in shape and appear-
ance. Like all deformable objects, they maintain no rigid
structure. Yet, more so than many common articles (such as
shirts or pants), they trace no easily-recognizable silhouette,
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Fig. 1. Given an initial image, we wish to recover the sock configuration.

and contour alone offers little guidance. Furthermore, their
tubular shape lends itself to highly complex configurations:
the sock may be rightside-out, inside-out, or arbitrarily
bunched. As it contains no overtly recognizable landmark
features—such as buttons or zippers—the perceptual task is
quite subtle, residing at the lowest levels of texture.

Our main contributions are as follows:
• Local texture and shape descriptors for patch recogni-

tion: The core of our approaches hinges on the use of
highly discriminative local features for cloth texture. To
this end, we examine a variety of texture- and shape-
based patch features and choices of kernels. We have
found that a combination of Local Binary Pattern (LBP)
and shape features, trained with a χ2 kernel, are well-
suited to this task. Our work shows that these cues alone
are typically powerful enough to determine whether, for
instance, a sock is inside-out.

• A model-based approach to determine sock configu-
ration: To reduce noise and enforce structural consis-
tency, we combine the aforementioned descriptors into
a global appearance model for socks. This model uses a
combination of local texture cues and global contour to
infer a basic parse of the sock’s configuration, as would
be relevant to most robotic manipulation tasks. We use
this both as a means of classification and description:
classifying whether a sock is flattened, inside-out, or
bunched, and determining the location of key features
within these configurations.

• A similarity metric for matching socks: We developed
a similarity score based on a variety of visual cues
(texture at different scales, color histogram represen-
tations, and size) for pairing socks. Our approach uses
this distance metric as input to a matching algorithm
to find the set of matches that maximize the sum
of the matches’ similarity scores. We achieve perfect
matching on our database of 100 socks and further show
robustness to adding stray socks to the set.

• Robotic implementation: To illustrate the effectiveness
of our perceptual tools, we implement our approach on
the Willow Garage PR2.
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Fig. 2. (a) We begin with an image of a sock in one of 8 poses. (b) The background is subtracted to obtain a mask of the sock. (c) A local texture
classifier is used to determine landmark patches. (d) Visualization of the response of landmark filters on a sock. (e) These local features are then combined
in a global shape model, which determines the configuration of the sock.

II. RELATED WORK

We present the related work along three axes: robotic
manipulation of cloth, grasping, and visual perception of
textures and material.

A. Robotic manipulation of cloth

The current state of the art in robotic cloth manipulation
is still far removed from having a generic robot perform
tasks such as laundry. In the context of robotic laundry, past
research has mostly considered shape cues for perception,
enabling tasks such folding polygonal shapes from a shape
library [1], spreading out a clothing article and classifying
its category [2], [3], [4], [5], detecting and removing wrin-
kles [6], [7], and folding previously unseen towels starting
from arbitrary configurations [8]. While shape cues have the
benefit of being robust across appearances and are a natural
choice in the aforementioned tasks, shape cues only provide
very limited information for the purpose of arranging socks.
In this paper we do not restrict ourselves to shape cues, but
also study, and in fact get most leverage from, cues based
on texture and color.

Socks require rather different manipulations than the grasp
and tugging strategies exhibited in prior cloth manipulation
work. Besides the mere scale and tubular structure of socks,
their structure necessitates particularly complex motions,
such as flipping and bunching. While the emphasis of this
work is on perception, we also integrated our perception
algorithms onto a general purpose robot. This work is the
first to perform such manipulation primitives with a general
purpose robot.

B. Grasping

Our aim is to provide a basic parse of the sock, such that
deft manipulations may be performed. The key to many of
these manipulations is an accurate initial grasp. Yet while
traditional grasp planning is done by reasoning about 3-D
configurations of gripper and object, these are often hard to
obtain for real-world objects—in particular for the thin lay-
ered structure of socks. More recent approaches have aimed
at relaxing this often difficult to meet assumption by inferring
grasp points for unseen objects from local statistics [9], [10]
or parallel structures [11]. However, these works aim only
to obtain an arbitrary grasp of the object, mostly for picking
it up. Likewise, we wish to enable fine manipulations such
as flipping or pairing, which are informed by the topology
of the sock rather than broad spatial reasoning.

max

MR8

Sunday, September 12, 2010

Fig. 3. The MR8 filter bank consists of 6 gaussian derivative and 2
blob filters. A maximum operations is performed over different orientation
variants in order to achieve robustness with respect to rotations.

C. Visual Perception of Texture and Materials

Recognition of textures and materials have received wide
attention in computer vision. State-of-the-art methods as
evaluated on the Curet or KTH-TIPS database [12] include
filter- and texton-based techniques like MR8 features [13]
or Local Binary Patterns (LBP) [14] as well as MRF-based
methods [15]. More recent approaches have further included
shape-based techniques like edge maps and curvature [16].

Here we apply these descriptors to robotic manipulation
tasks. In particular, we show how to leverage micro-texture in
order to classify between different sides of fabric and adapt
robotic grasp strategies depending on material properties. We
additionally incorporate our descriptors into a broader global
cloth shape model, which builds upon [17]. This earlier work
is based on shape alone, and does not allow for more complex
articulations including flipped and spread-out configurations.

III. METHODS

The following are the key components in our approach:
• Extraction of appearance features;
• Learning a patch classifier;
• Specification of a global model for reconstructing sock

configuration;
• A strategy for matching alike socks based on the afore-

mentioned descriptors.

A. Appearance Features

In order to understand the configuration of a sock, our
approach relies on pinpointing the location of key landmarks.
To identify these landmarks, we study canonical texture cues
in a classification framework.

Two categories of features are of interest to us: those based
on texture, and those based on local shape.



Fig. 4. LBP features are computed by taking a neighborhood (gray
circles) around each pixel (gray square) and computing the difference of
each neighborhood pixels to the center pixel. The sign of this difference
determines a binary value for each neighborhood pixel. The concatenated
sequence of binary values is mapped to a unique pattern id.

(a) (b) (c)
Fig. 5. We extract the local shape by using a HOG respresentation. (a)
An image of a sock. The blue region indicates a segment along the contour.
(b) A mask of a segment along the contour is computed, and rotated such
that it is upright. (c) For each segment mask, gradient information is binned
into local 9 dimensional orientation histograms. Each bin is visualized with
small line segments that have a length according to the accumulated gradient
strength.

1) Texture: For texture representation we consider two of
the most popular texture descriptors: the MR8 filter bank [13]
and Local Binary Patterns (LBP) [14]. Figure 3 and Figure 4
illustrate the basic concepts of those approaches.

MR8 features are computed by convolving the images with
a set of filters. For each pixel the maximum is computed
over groups of rotated versions of these filters in order to
obtain a rotation invariant representation. This results in an
8-dimensional feature space which is vector quantized by
k-means. The final descriptor is a histogram that counts
matches to the individual codebook vectors of the quantized
space.

LBP features are computed by considering the difference
in grayscale value between each pixel and its 8 neighbors.
Looking at the sign of these differences, we obtain a binary
vector. As there is only a limited set of distinct binary
patterns, each binary pattern is mapped to a unique pattern
id. The final feature is a histogram over these pattern ids.
For more details on both methods we refer to the given
references.

Both features are extracted at a fine scale as we intend to
capture the micro-texture of the fabric, which seems most
appropriate for our task.

2) Shape: Because some of the landmarks of a sock, such
as the toe and the heel, are additionally related to the local
shape, we augment our texture cues to include shape features.
The local shape along the contour of a sock can be captured
by a Histogram of Oriented Gradients (HOG) [18] computed
on the mask of a local contour region split into 2 cells.
Figure 5 illustrates the basic concept of this approach.

B. Classifier Training

The solution that we propose for the classification task
follows the standard literature on texture classification and

trains a discriminative SVM classifier on those texture fea-
tures as it has shown superior performance (e.g. [19], [12])
over simpler nearest neighbor-based schemes [13]. Given a
labelled training set with K classes

{[fp1 , 1] | p = 1, . . . , N1} ∪ · · · ∪ {[fpK ,K] | p = 1, . . . , NK}
(1)

with Ni instances of label i, we seek to train a classifier that
correctly predicts the associated class label:

fp1 → 1 ; . . . ; fpK → K (2)

Here fpi is the feature vector extracted from a single patch
p whose correct label is i. The standard SVM approach [20]
learns a classifier by finding appropriate weight vectors wi
that attempt to ensure that for all p we have w>i f

p
i > w>j 6=if

p
i .

Note that while the classifier is linear in wi the features are a
nonlinear function of the image pixels. The weight vector wi
is determined by solving the following (L2-loss) optimization
problem:

minw,ξ≥0

K∑
i=0

1

2
‖wi‖22 + Ci‖ξi‖22

s.t. ∀p, i, j 6= i : w>i f
p
i ≥ w

>
j f

p
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p
i

In addition, we train the SVM classifier with four different
types of kernels: linear, degree-3 polynomial, radial basis
function (RBF), and χ2. Following ([21], [22]), we define
the χ2 kernel as: χ2(x, y) = exp(−γ ∗

∑
i(xi − yi)2/(xi +

yi)), and define the other kernels according to their standard
definition. The applications of the χ2 kernel to texture
classification are explored in [23].

C. Global Model

To infer global structure, we incorporate each local feature
into a holistic parametrized shape model. In [17] we de-
scribed the foundation of a parametrized global model using
a contour-based approach. Here we extend this method to
include local feature cues.

To determine the configuration of an article of clothing, we
first define a parametrized model associated with that article.
We then frame the task of determining global structure as a
numerical optimization problem, whose objective function
captures the “goodness of fit” of the model, and whose
constraints reflect our a priori knowledge of the article’s
possible variations. This entails three main components: a
framework for defining models, a means of determining
model fit, and an efficient method for determining good
parameters in this setting.

1) Model Definition: A model is, essentially, a
parametrized representation of a given shape. As such,
it requires a few key components:
• A contour generator MCG : {P ∈ Rp} → {C ∈ R2×c}

which takes a set of scalar parameters P as input, and
returns the contour which would be observed were the
model physically present with these parameters.

• A set of feature detectors



MFD : {Di : {P ∈ Rp, I ∈ Rn×m×3} → {ri ∈ R}}K .
Each detector Di takes the parameters and image as
input, and outputs the response of the patch to label i
at its current predicted location.

• A legal input set ML ⊆ Rp which defines a set of
parameters over which M is said to be in a legal
configuration.

2) Model Cost: Our model cost, which is a function of
the parameters P , the observed image I and the observed
contour C, is given by a weighted sum of shape- and
appearance-related penalties:

C(P, I, C) = β(CS(P,C)) + (1− β)(CA(P, I))

The shape cost is given by

CS(P,C) = (α)d̄(MCG(P )→ C)+(1−α)d̄(C →MCG(P )).

with d̄(A→ B) the average nearest-neighbor distance from
contour A to contour B.

The appearance cost is given by

CA(P, I) =
[
α1 . . . αK

]  r1
...
rK

 .
Here ri is the response1 of feature detector i at the

predicted feature location, and the weights dictate the im-
portance given to various landmarks. For instance, in de-
termining the configuration of a sock, we may have local
detectors for ankles, toes, and generic patches. These are
given respective weights of 0.5, 0.4, and 0.1: indicating that
it is most important that the model correctly predict the seam,
and comparatively unimportant to predict generic patches. In
the limit where β approaches 1, this cost function is identical
to that defined in [17].

3) Parameter Fitting: To ensure that the optimization
begins in a reasonable initial position, we use Principle
Component Analysis to infer the approximate translation,
rotation, and scale of the observed contour. The details of
this procedure may be found in [17].

We then locally optimize the parameters of our model
via a numerical coordinate descent algorithm. To guide the
optimization, this is often done in multiple phases, which
allow varying degrees of freedom. As we do so, we consider
only legal configurations, ensuring that the model will not
converge on an inconsistent state.

D. Matching

When considering texture thus far, we limited ourselves to
micro-texture, which attempts to capture the textile structure
of the socks without regard to the broad design of the sock
itself. For matching, however, the particular design is exactly
what is being matched: therefore we construct our feature
vector with a combination of micro texture, macro texture,
width, height and color features.

1The response is given by w>f in the appropriate kernel, as discussed
in Sec. III-B

As LBP will show to be the better performer in our pure
texture-based experiments, we base our micro texture feature
on it, and subsequently compute the macro texture feature by
down-scaling the image by a factor of two before extracting
the LBP features. Color features are obtained by computing
a hue histogram in HSV space with 19 bins, and we have an
additional “non-color” bin that collects all pixels with low
value or saturation.

We investigate the use of these cues both individually
as well as in combination by simply concatenating them
together into a feature vector of increased dimensionality. We
also investigated learning the weights for cue combination
from data in an optimization framework—but the naive
strategy of concatenation turns out to be sufficient for our
task at hand.

For the actual matching we look at a greedy as well as
an optimization-based scheme. For the greedy matching we
simply score all possible pairs (si, sj) by our feature distance
function dχ2(si, sj) =

∑
i(xi − yi)2/(xi + yi) and accept

successively the best ranked pair. After accepting a pair, we
remove the involved socks from further consideration. In the
case of stacked features, the distance function is simply the
sum of the individual feature distances.

More interestingly, we also propose a optimization scheme
that seeks to minimize a global matching score across all
pairs. This can be seen as finding a permutation P such
that:

min
P

∑
i

dχ2(si, sP(i)) (3)

The problem of finding such a permutation is known as
the minimum cost perfect matching problem. Efficient algo-
rithms exist to find the exact solution: we used the algorithm
proposed in [24].

To handle stray socks we start with the lowest scoring
(best) pairs and work our way up until the cost exceeds the
maximum cost in which the algorithm considers indicative
of a proper match. In case of an odd number of socks in the
set, we introduce a “fake sock” which has equal similarity
with all socks. The true sock matched to the fake sock is
considered a stray sock.

IV. EXPERIMENTS
1) Dataset: We test our approach on 800 images, cor-

responding to 100 socks laid in 8 canonical configurations,
as detailed in Figure 6. The images were taken on a 12.3-
megapixel Nikon D90 camera with a 35mm Nikon DX lens,
using an external Sigma Macro ring flash. The photos were
taken from a birds-eye perspective against a green tablecloth,
allowing us to locate the sock contour via simple color
segmentation.2

Each image was then labelled in two ways. To train
the proper feature classifiers, the sock image was hand-
segmented by microtexture class: opening, heel, toe, or other

2As the manipulation context we are considering will be that of a sock
on the floor or other fixed background, we do not consider segmentation
to be a particularly relevant problem. However, background subtraction and
color segmentation are a well-studied problem in computer vision, and we
invite interested readers to look further (see e.g. [25]).
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Fig. 6. There are 4 canonical modes the sock may be in: (a) Sideways, (b) Heel Up, (c) Heel Down, or (d) Bunched. Additionally, the toe may be
rightside-out (top) or inside-out (bottom) for each configuration. In conjunction with 2D rotation and reflection, this suffices to capture all reasonable sock
configurations.

for non-bunched models, and inside or outside for bunched
models. Additionally, to provide a ground truth comparison
for all configuration estimates, the precise locations of all
landmark points was hand-annotated.

We also supplement this dataset with a second one, which
shows all pairs of sock correctly flipped in a non-bunched
configuration in order to evaluate our sock matching algo-
rithm.

A. Inside-Out Classification
We first investigate purely texture-based classification of

inside-out vs rightside-out socks.
First we compare the 2 popular texture descriptors—LBP

and MR8 3—and a range of different kernel choices for the
SVM classifier: linear, polynomial (degree 3), RBF, and χ2.
4

We compute the accuracy over 5 random splits of the
dataset into equal-sized training and test sets. The SVM
parameters are determined by cross-validation on the training
set. Table I presents mean accuracy and standard deviation
of the different splits.

LBP in combination with the χ2 kernel shows the best
performance at 96.6 ± 1.82%, while the best MR8 result
lags behind at 87.8± 2.77%. 5

With this choice of texture descriptor and kernel, we
investigate how important resolution of the sock images is.
Figure 7 shows the result of the classifier training and testing
on images downscaled to various resolutions. The graph
shows a very graceful degradation in the performance of
the texture descriptor as we downscale the image resolution.
Furthermore, the performance of the texture descriptor does
not benefit from increased resolution after 4-megapixels, so
further increase in the resolution of the camera is unlikely
to increase the performance of our results.

B. Recognizing Sock Configuration
Our primary goal is to provide the perception necessary to

allow a robot to manipulate socks. To that end, we desire to

3We trained the MR8 descriptor with a texton dictionary consisting of
256 cluster centers.

4All classifiers were trained using the LIBSVM software package [26],
modified to include the χ2 kernel.

5In this work, patch rotation is normalized with respect to the contour it
borders. To ensure a fair comparison between descriptors, we additionally
tested modified versions of each descriptor: a rotationally variant MR8, and
invariant LBP as discussed in [27]. In the end, the rotationally variant LBP
with the χ2 kernel still shows the best performance.

Feature Linear Kernel Poly Kernel RBF Kernel χ2 Kernel
MR8 85.2± 2.28% 85.4± 1.95% 86.6± 3.13% 87.8± 2.77%

LBP 93.8± 3.35% 94.2± 3.63% 95.8± 2.39% 96.6± 1.82%

TABLE I
A COMPARISON OF THE PERFORMANCE OF MR8 AND LBP
DESCRIPTORS IN COMBINATION WITH VARIOUS KERNELS.

Fig. 7. Accuracy of using LBP in combination with χ2 kernel for
the inside-out vs. rightside-out classification on images from the dataset
downscaled to various resolutions.

perceive enough about the structure of the sock to perform
such motions as:
• Flipping an inside-out sock;
• Pairing socks at the ankle;
• Bringing a bunched sock into a planar configuration.
These manipulations require a general understanding of

the configuration of a sock, including for instance its orien-
tation, the locations of the sock opening, and whether or not
it is inside-out.

In the sections that follow, we demonstrate two approaches
to gain such an understanding: 1) Using only local features,
we attempt to recover the sock’s configuration 2) We inte-
grate these local features into a global model which considers
both appearance and contour information.

We evaluate the accuracy of these approaches via two
error metrics, giving a qualitative and quantitative measure
of accuracy per landmark prediction. The qualitative measure
is computed by comparing the predicted location to the
microtexture-labelled image. If the 10 pixel (roughly 1 mm)
neighborhood surrounding the prediction contains the proper
label, it is deemed a success. The quantitative measure is
the distance from the predicted location to the precise, hand-
annotated landmark.



Appearance Contour Model Known Model Unknown
Configuration Landmark Qual (%) Quant (cm) Qual (%) Quant (cm) Qual (%) Quant (cm) Qual (%) Quant (cm)

Side
Opening 98.8± 0.4% 1.04± 0.67 92.0± 1.41% 1.65± 5.43 98.0± 0.63% 0.68± 0.64 96.0± 1.9% 0.85± 1.31

Heel 85.8± 1.72% 2.26± 2.25 83.6± 1.62% 1.63± 2.61 85.8± 2.64% 1.98± 2.30 — —
Toe 93.2± 3.54% 1.67± 1.76 95.0± 1.41% 1.65± 5.58 100.0± 0.0% 0.91± 0.61 99.6± 0.5% 1.08± 1.27

Heel Up/Down Opening 91.5± 1.61% 1.87± 4.17 71.1± 1.43% 6.28± 10.9 94.7± 1.03% 1.40± 4.61 93.8± 0.5% 1.36± 3.42
Toe 92.8± 1.17% 2.21± 4.12 72.7± 1.57% 6.49± 10.9 97.0± 0.54% 1.91± 4.58 96.1± 0.4% 1.67± 3.42

Bunched Opening 44.6± 2.06% 2.25± 1.69 38.0± 3.03% 2.84± 1.95 73.0± 4.47% 1.46± 1.60 — —

TABLE II
THE PERFORMANCE OF THE APPEARANCE, CONTOUR ONLY, AND GLOBAL MODELS FOR EACH CONFIGURATION AND LANDMARK.

Detection via Appearance Features
We first attempt to determine the configuration using local

feature detectors. In this case, it is assumed that the general
configuration—sideways, flattened, or bunched—is given.
For each of these configurations, we train a set of detectors
to locate particular sock regions.

• Side View: For the side-view configuration, we trained
classifiers for four texture categories: the opening, the
toe, the heel, and generic patches. As each of these
features lie on the contour, this model does not consider
the response of interior patches.

• Heel Up/Down View: When the heel is entirely vertical,
we make no attempt at finding it. Rather, we simply
observe that the heel is not in a relevant location for
grasping, and search only for opening, toe, and generic
patches. This also does not consider the response of
interior patches.

• Bunched: For the bunched configuration, we trained
classifiers for the opening, and generic patches. This
model only considers the response of the interior
patches, as the opening does not lie on the contour.

Each landmark point is then determined to be the center
of the maximally-responding patch for its corresponding
detector. Table II details the results of this approach.

Detection via a Global Model
We then integrated the above feature detectors into a global

model, as detailed in III-C. To perform a global classification,
three separate models were considered. These models are
shown in Figure 8. Appearance scores were computed in the
following way:

• The Side-View Model computes the appearance cost
using Opening, Heel, Toe, and Generic responses, with
respective weights of 0.4, 0.35, 0.2, and 0.05. The loca-
tion of the first three landmarks can be inferred from the
skeletal structure of the model. The Generic responses,
in all models, are a weighted sum of the response of
the five remaining polygon points. This model was run
with 4 separate initializations, corresponding to every
combination of heel and toe directions.

• The Heel-Up/Down Model computes the appearance
cost using Opening, Toe, and Generic responses, with
respective weights of 0.5,0.4, and 0.1. The remaining
polygon points, as well as the top- and bottom- center
of the sock, are used to compute the Generic score.

This model was run with 2 separate initializations: one
in which the toe was left of the opening, and its mirror.

• The Bunched Model computes the appearance cost
using local inside and outside patch responses. The
appearance response is then computed as the sum of the
average inside-out response on one side of the predicted
opening and average rightside-out response on the other.
To keep the score continuous despite the discrete step
size between patch locations, a low-weighted term is
added to this which penalizes the distance from the
opening to those patches whose responses do not fit
our hypothesis. This model was run with 2 separate
initializations; one in which the inside-out half was
presumed to be on the left, and the other on the right.

For computational efficiency, patch responses are not
recomputed precisely at each pixel. Rather, a discrete set
of patch responses are precomputed, and the response at a
given point is given by bilinear interpolation between the
responses of its neighboring patches.

The results of this approach are tabulated in Table II. We
consider three cases. As a point of comparison, we first
consider the case where β is set to 1—analogous to the
pure shape-based approach of [17]. The latter two follow
the global model approach outlines above: in the former, the
correct model class is known a priori; in the latter, it is not.6

As can be seen, the global model improves significantly
on the baseline approach in most areas. While the texture
and curvature features of the Side View landmarks are fairly
telling, their precise location is rendered ambiguous by tex-
ture alone. Thus while the global model does little to improve
the qualitative accuracy of our predictions, it yields far more
precise landmarks. In dealing with the fairly homogenous
textures of the Heel Up/Down View, the contour fit proved
crucial to gaining high qualitative results. The Bunched
configuration, which could not be dealt with by looking for a
single local feature, was handled with reasonable accuracy by
our Model. While the inherent discrete nature of the approach
made it unlikely that the seam would fall precisely in the slim
labeled area (yielding lower qualitative results), it remained

6In the Model Known case, only the desired feature set (Side View, Heel
Up/Down, Bunched) is given: orientation and parity are always unknown. In
the Model Unknown case, we consider both Side View and Heel Up/Down
models simultaneously on all non-bunched configurations, and choose the
maximally scoring configuration between the two. As the recognition task
and required manipulations are fairly distinct for Bunched and Non-Bunched
cases, we do not include Bunched Models in the latter evaluation.



(a) (b) (c)
Fig. 8. (a) The Side View Model is parametrized by the toe radius, the sock width, the toe, the opening, and a joint. Its only constraint is that the heel
be convex. (b) The Heel Up/Down Model is parametrized by the toe radius, the sock width, the toe, the opening, and a joint (c) The Bunched Model is
parametrized by two toe radii, two sock-half widths, the distance of the opening, and both end points

Configuration Classification Accuracy
Bunched 81.0± 3.81%

Non-Bunched 92.8± 1.37%

TABLE III
BUNCHED CLASSIFICATION

more or less as precise as all other configurations. Example
successes and failures are shown in Figure 9.

Finally, we consider the problem of distinguishing between
bunched and non-bunched socks. To do this, we use an
approach identical to Section IV-A to train a bunched-vs-
non-bunched classifier, using LBP and Shape features and
the χ2 kernel. The classification results are given in Table III.

C. Sock Pairing

Table IV shows the evaluation of our pairing algorithm.
Both the greedy and optimized matching strategies are per-
formed on different feature types. We vary the number of
socks in the set and present the mean accuracy and standard
deviation over 5 random splits of the full dataset.

With a few exceptions, the optimization approach outper-
forms the greedy strategy and also shows lower variance
across the different runs. The MicroLBP feature is the best
performing single cue and its performance only drops by
4% when scaling from 10 to 100 socks. Combining all
cues in single feature vector yielded perfect matching for all
investigated sets of socks for the greedy as well as the opti-
mization method. To further challenge our greedy matching
algorithm we also investigate sets to which we added single
stray socks. Figure 10 shows a precision recall evaluation of
the combined cues approach where we successively detected
pairs of socks according to the matching score while we
record recall and precision with respect to the correct pairs:

precision = tp/(tp + fp) =
#correctly matched

#predicted matches
(4)

recall = tp/(tp + fn) =
#correctly matched

#pairs in database
(5)

While our method performs without errors for the case of no
stray socks, we can observe a very graceful degradation up to
the case where 50 stray socks are mixed with 50 pairs—for
which we still achieve 96.1% recall at a precision of 98.0%.
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Fig. 10. We evaluate our matching performance on a set of 50 pairs of
socks. The precision-recall plot shows how precision degrades from the most
confident pair to the least confident one as we successively add up to 50
stray socks.

D. Robotic Implementation

To illustrate the power of these perceptual tools, we
implemented it on the Willow Garage PR2 robot. Videos
of the functioning system are available at:

http://rll.berkeley.edu/2011 IROS socks

V. CONCLUSIONS

We considered the problem of equipping a robot with the
perceptual tools for reliable sock manipulation. We framed
this as a model-based optimization problem, whose primary
components are local texture descriptors and a contour-
matching strategy. We examined in detail the strength of
individual textural features, and augmented them with local
shape cues. These tools enabled us to reliably recover the
configuration of potentially bunched socks. Additionally, we
proposed a feature-matching algorithm for sock pairing.
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