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Abstract
We consider the problem of autonomous robotic laundry folding, and propose a solution to the perception and manipulation
challenges inherent to the task. At the core of our approach is a quasi-static cloth model which allows us to neglect the
complex dynamics of cloth under significant parts of the state space, allowing us to reason instead in terms of simple
geometry. We present an algorithm which, given a 2D cloth polygon and a desired sequence of folds, outputs a motion
plan for executing the corresponding manipulations, deemed g-folds, on a minimal number of robot grippers. We define
parametrized fold sequences for four clothing categories: towels, pants, short-sleeved shirts, and long-sleeved shirts, each
represented as polygons. We then devise a model-based optimization approach for visually inferring the class and pose of
a spread-out or folded clothing article from a single image, such that the resulting polygon provides a parse suitable for
these folding primitives. We test the manipulation and perception tasks individually, and combine them to implement an
autonomous folding system on the Willow Garage PR2. This enables the PR2 to identify a clothing article spread out on a
table, execute the computed folding sequence, and visually track its progress over successive folds.

Keywords
Personal robotics, cloth, manipulation, perception

1. Introduction

With the 20th century advent of personal computers, the
dream of the future was one of convenience and autonomy:
of intelligent machines automating the monotonous rotes of
daily life.

Few tedious tasks are as universal to the human expe-
rience as household chores. No utopian future would be
complete, then, without household robots relieving humans
of these tasks: doing the dishes, sweeping the floors, setting
the table, and doing the laundry. In this paper, we explore
the latter challenge. Washing machines and dryers have
automated much of the process, but one clear bottleneck
remains: autonomous laundry folding.

While advances continue to be made in the field of
household robotics, this vision has proven particularly dif-
ficult to realize. This is largely due to the vast state space in
which such a robot is expected to operate. In addition to the
well-established problems of perception and manipulation
in unconstrained environments, the task of laundry folding
poses a unique challenge as not only the environment, but
the very object which must be manipulated, is itself highly
complex. Cloth is non-rigid, flexible, and deformable,
with an infinite-dimensional configuration space. It may

be found in an innumerable variety of poses, rendering
the perceptual tasks of classification and pose-estimation
extremely difficult. Furthermore, the dynamics of cloth
are difficult to capture in even the most sophisticated
simulators, posing great challenges to the manipulation
planning task.

We do not, in this work, intend to provide a brute-force
mechanism for planning under such complexity. Rather, we
aim to simplify the problem by carving out a particular
subset of cloth configurations which, under a number of
governing assumptions, may be represented by few param-
eters while retaining predictable behavior during robotic
interaction. In so doing, we build on the results of fel-
low researchers, such as Balkcom and Mason (2008) and
Bell (2010). In particular, we exploit the use of gravity by
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considering clothing articles which may be separated into
at most two parts: one part which lies flat on a horizon-
tal surface and one (possibly empty) which hangs verti-
cally from the robot’s grippers parallel to the gravity vector,
separated by a single line which we deem the baseline.
In so doing, we replace an infinitely dense mesh with a
finite-sided polygon, and reduce the recognition and plan-
ning tasks to shape-fitting and two-dimensional geometry,
respectively.

The work that follows considers three questions:

1. What is this simplified model, and under what assump-
tions is it a valid approximation for cloth behavior?

2. Given a cloth polygon, how can a robot be made to
execute folds on it?

3. Given a single image of a clothing article, how can such
a polygonal representation be extracted?

The remainder of this paper is organized as follows. In
Section 2 we discuss work related to both the manipulation
and detection of deformable objects. In Section 3 we
define the folding problem, and present a subset of cloth
configurations under which the folding task becomes purely
geometric. We additionally discuss the assumptions under
which our predictions may reasonably hold. In Section
4 we describe an algorithm to compute the manipulation
necessary to allow a robot to execute a folding sequence,
using a set of primitives deemed g-folds. In Section 5 we
devise a perceptual scheme for extracting, from a single
image of a clothing article, a category-level polygonal
representation on which the above algorithm may act; one
which both classifies the presented article, and projects
its structure a simpler polygon which may be more easily
folded. In Section 6 we show the experimental results of
our approach, both in folding clothing articles when the
category and cloth polygon are known, and in inferring
this knowledge visually when unknown. We combine these
tools to implement a complete folding system on a Willow
Garage PR2 robot. We conclude in Section 7.

This paper brings together two previously separate bod-
ies of work. The g-fold formalism and subsequent motion
planning strategies was first presented by van den Berg
et al. (2010). The task of classifying and recognizing the
pose of clothing was done by Miller et al. (2011). We
now present, for the first time, our complete framework for
robotic laundry folding.

2. Related work

2.1. Manipulation

In the work of Bell and Balkcom (2010), grasp points nec-
essary to immobilize a polygonal non-stretchable piece of
cloth are computed. Gravity is used by Bell (2010) to reduce
the number of grasp points required to hold cloth in a pre-
dictable configuration, potentially with a single fold, to two
grippers. We extend this work and include a folding surface.
We assume that points that are lying on a table are fixed by

Fig. 1. The PR2 robotic platform (developed by Willow Garage)
performing a g-fold on a towel.

friction and gravity, and need not be grasped. Bell’s work
also demonstrates how to fold a T-shirt using the Japanese
method;1 this fold can be achieved by grasping the cloth at
three points without regrasping.

Fahantidis et al. (1997) discuss robotic handling of cloth
material with application to a number of specific folds. The
work of Osawa et al. (2006) also discusses a specific fold-
ing manipulation. The work of Maitin-Shepard et al. (2010)
deals specifically with folding towels. This work focuses
on visual detection of the vertices of the towel, and uses
a scripted motion to achieve folds using a PR-2 robot. We
build on the results of this work in our experiments.

Some prior work also describes robots using tools and the
design of special purpose end-effectors as a step towards
laundry folding. For example, Osawa et al. (2006) devel-
oped a robot capable of using a ‘flip-fold’ for folding and
a plate for straightening out wrinkles. Salleh et al. (2007)
present an inchworm gripper for tracing the edge of a piece
of clothing. A range of gripper designs is presented by
Monkman (1995).

There is also quite a large body of work on cloth simu-
lation, which simulates the behavior of cloth under manip-
ulation forces using the laws of physics, including those of
Baraff and Witkin (1998), Bridson et al. (2002), and Choi
and Ko (2002). In our work, we manipulate cloth such that
it behaves quasi-statically, allowing us to reason about the
geometry of the cloth, while avoiding complex physics or
dynamics.

Folding has been extensively studied in the context of
origami. Balkcom and Mason (2008) consider a model of
paper where unfolded regions are considered to be rigid
facets connected by creases which form ‘hinges’, and detail
a folding procedure which respects the assumptions of this
model. Our approach is similar, in that we also consider a
subset of the configuration space where the dynamics are
simpler. However, unlike the hinge model, our cloth model
assumes full flexibility and requires no bending energy.
While this assumption yields a notably different fold
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manipulation, the formalism of the fold lines themselves is
similar, and we draw from results in paper folding in our
own work. Applications of paper folding outside origami
include box folding as presented by Liu and Dai (2003) and
metal bending as presented by Gupta et al. (1998), where
the material model is essentially the same as that of paper.

2.2. Perception

Estimating the configuration of a clothing article can be
seen as an instance of an articulated pose estimation task.
Classic articulated pose estimation methods iteratively fit or
track an articulated model, updating the pose of individual
part segments subject to the overall body constraints. Early
methods such as those of Bregler and Malik (1998) were
based on optic flow and linearized exponential map-based
constraints; subsequent approaches include the efficient
sampling methods of Sidenbladh et al. (2002), exemplar
methods of Demirdjian et al. (2003), regression strategies
of Urtasun and Darrell (2008), and subspace optimization
methods of Salzmann and Urtasun (2010). Borgefors
(1988) used an energy-optimization strategy to match edge
points between two images.

Related models for fully non-rigid shape modeling and
estimation are typically based on a learned manifold, e.g.
active appearance models as proposed by Cootes and Tay-
lor (2001). Few methods investigate clothing explicitly.
Notable exceptions to this are the recent work of Guan
et al. (2010), which expands the SCAPE manifold-based
model of Anguelov et al. (2005) to include a model of
three-dimensional clothing forms; the work in person track-
ing systems by Rosenhahn et al. (2007), which attempt to
account for clothing variation; and methods for estimat-
ing folds in deformable surfaces proposed by Salzmann
and Fua (2009). In this work we adopt a much simpler
model, and propose schemes for direct optimization of spe-
cific shape forms that can be directly related to ensuing
manipulation.

Fahantidis et al. (1997) describe the isolated executions
of grasping a spread-out material, folding a spread-out
material, laying out a piece of material that was already
being held, and flattening wrinkles. Their perception sys-
tem relies on a library of exact, polygonal shape models of
the instances considered and then matches the sequence of
extracted edges.

There is a body of work on recognizing categories of
clothing. For example, Osawa et al. (2007) and Hamajima
and Kakikura (2000) present approaches to spreading out a
piece of clothing using two robot arms and then classifying
its category.

Yamakazi and Inaba (2009) present an algorithm that rec-
ognizes wrinkles in images, which in turn enables them to
detect clothes in a scene. Kobori et al. (2010) have extended
this work towards flattening and spreading clothing. Kita
et al. (2004) fit the geometry of the silhouette of a hanging
piece of clothing to the geometry of a mass spring model of

the same piece of clothing and are able to infer some three-
dimensional information about the piece of clothing merely
from its silhouette.

3. Problem description

Let us begin with a description of the folding task. We
assume gravity is acting in the downward vertical (−z)
direction and a sufficiently large planar table in the hori-
zontal (xy) plane. We assume the article of clothing can be
fully described by a simple polygon (convex or non-convex)
initially lying on the horizontal surface. We are given the
initial n vertices of the polygonal cloth in counterclockwise
order.

We make the following assumptions on the cloth mate-
rial:

1. The cloth has infinite flexibility. There is no energy
contribution from bending.

2. The cloth is non-stretchable. No geodesic path lengths
can be increased.

3. The cloth has no slip between either the surface on
which it lies or itself.

4. The cloth has zero thickness.
5. The cloth is subject to gravity.
6. The behavior of the cloth is quasi-static: the effects of

inertia are negligible.

At the core of our approach is the following addi-
tional assumption, which we call the downward tendency
assumption:

7. If the cloth is ‘released’ from any gripped state, no point
of the cloth will ever move upwards as a result of only
gravity and internal forces within the cloth.2

The above assumptions do not directly follow from
physics, rather they are an approximation which seems to
match the behavior of reasonably shaped cloth, such as
everyday clothing articles, surprisingly well, allowing us
to reason purely about the geometry of the cloth: the state
space consists of just configurations, and cloth motion is
readily determined from hand motion.

The downward-tendency assumption allows the cloth to
be held by the grippers such that one section lies horizon-
tally on the surface and another section hangs vertically.
The line that separates the horizontal and the vertical parts
is called the baseline. To ensure deterministic behavior of
the cloth, the grippers must be arranged such that the verti-
cal section does not deform, i.e. such that it does not change
its shape with respect to the original (potentially stacked)
geometry. The points that are lying on the surface (includ-
ing those on the baseline) are immobilized, as they cannot
move in the plane due to friction and will not move upward
per the downward-tendency assumption, so they need not
be grasped. Figure 2 shows an example, where points of the
cloth are held by grippers.

To ensure that the vertical part of the cloth does not
deform, we employ the following theorem:
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Fig. 2. Examples of vertical parts of cloths in various configura-
tions. In order for the cloth not to deform, all convex vertices not
at the baseline at which the negative gravity vector (small arrows)
does not point into the cloth must be grasped. These vertices are
indicated by the dots.

Theorem 1. A vertically hanging cloth polygon is immo-
bilized when every convex vertex of the cloth at which the
negative gravity vector does not point into the cloth polygon
is fixed (i.e. be held by a gripper or be part of the baseline).

Proof. See Appendix A.

A g-fold (g refers to gravity) is specified by a directed
line segment in the plane that partitions the polygon into
two parts, one to be folded over another. A g-fold is suc-
cessfully achieved when the part of the polygon to the left
of the directed line segment is folded across the line seg-
ment and placed horizontally on top of the other part, while
maintaining the following property:

• At all times during a folding procedure, every part of
the cloth is either horizontal or vertical, and the grip-
pers hold points on the vertical part such that it does not
deform (see Figure 3).3

This ensures that the cloth is in a fully predictable config-
uration according to our material model at all times during
the folding procedure.

A g-fold sequence is a sequence of g-folds as illustrated
in Figure 4. After the initial g-fold, the stacked geometry
of cloth allows us to specify two types of g-fold: a ‘red’ g-
fold and a ‘blue’ g-fold. A blue g-fold is specified by a line
segment partitioning the polygon formed by the silhouette
of the stacked geometry into two parts, and is successfully
achieved by folding the (entire) geometry left of the line
segment. A red g-fold is similarly specified, but only applies
to the geometry that was folded in the previous g-fold (see
Figure 5).

We are given a robot with k point grippers that can grasp
the cloth at any point on the boundary of the polygon
formed by the silhouette of the stacked geometry. At each
such point, the gripper will grasp all layers of the stack at
that point (i.e. it is not capable of distinguishing between
layers). Each of the grippers is able to move independently
above the xy-plane and we assume that gripper motion is
exact.

The problem we discuss in this paper is then defined
as follows. Given a specification of a sequence of g-folds,
determine whether each of the folds are feasible given
the constraints and, if so, compute the number of grip-
pers needed and the manipulation motion for each of the
grippers to achieve the g-folds.

4. Fold execution

In this section, we describe the algorithm that addresses the
problem as formulated above. We first discuss single g-folds
on unstacked geometry (Section 4.1) and then sequences of
g-folds and stacked geometry (Section 4.2).

4.1. Single g-folds on unstacked geometry

Here we discuss the case of performing a single g-fold of
the original (unstacked) polygon. During the manipulation,
the cloth must be separated in a vertical part and a horizon-
tal part at all times. The line separating the vertical part and
the horizontal part is called the baseline.

Given a polygonal cloth and a specification of a g-fold by
a directed line segment (e.g. the first g-fold of Figure 5(a)),
we plan the manipulation as follows. The manipulation con-
sists of two phases. In the first phase, the part of the cloth
that needs to be folded is brought vertical above the line
segment specifying the g-fold (see Figure 3(1)–(3)). In the
second phase, the g-fold is completed by manipulating the
cloth such that the vertical part is laid down on the surface
with its original normal reversed (Figure 3(3)–(5)).

Let us look at the configuration the cloth is in when the
part of the polygon left of the line segment is fully vertical
above the line segment (see Figure 3(3)). Each convex ver-
tex at which the negative gravity vector does not point into
the cloth must be grasped by a gripper. This set of vertices
can be determined in O( n) time, if n is the number of ver-
tices of the cloth. We show here that the entire g-fold can be
performed by grasping only vertices in this set.

The first phase of the g-fold is bringing the part of poly-
gon that is folded vertically above the line segment speci-
fying the g-fold. We do this as shown in Figure 3(1)–(3),
manipulating the cloth such that the baseline of the vertical
part is parallel to the line segment at all times. Initially, the
‘baseline’ is outside the cloth polygon (meaning that there
is no vertical part) and is moved linearly towards the line
segment specifying the g-fold.

In the second phase, the g-fold is completed by laying
down the vertical part of the cloth using a mirrored manip-
ulation in which the baseline is again parallel to the line
segment at all times. Initially the baseline is at the line seg-
ment specifying the g-fold and is moved linearly outward
until the baseline is outside the folded part of the polygon
(see Figure 3(3)–(5)).

The corresponding motions of the grippers holding the
vertices can be computed as follows. Let us assume with-
out loss of generality that the line segment specifying the

 at Stanford University Libraries on November 13, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


Miller et al. 5

(1) (2) (3) (4) (5)

Fig. 3. The motion of two grippers (arrows) successfully performing the first g-fold specified in Figure 5(a) shown both in a three-
dimensional view and top view. At all times, all parts of the cloth are either vertical or horizontal and the cloth does not deform during
the manipulation. The boundary between the vertical part and the horizontal part of the cloth is called the baseline.

Fig. 4. Folding a long sleeve into a square using a sequence of seven g-folds. ‘Red’ g-folds apply to the geometry that was folded in the
preceding g-fold. ‘Blue’ g-folds apply to the entire stacked geometry.

)b()a(

Fig. 5. (a) A g-fold is specified by a directed line segment partitioning the (stacked) geometry into two parts. The g-fold is successfully
achieved when the part of the geometry left of the line segment is folded around the line segment. A sequence of two g-folds is shown
here. (b) A g-fold sequence similar to (a), but the second g-fold (a red g-fold) is specified such that it only applies to the part of the cloth
that was folded in the previous g-fold.

g-fold coincides with the x-axis and points in the positive
x-direction. Hence, the part of the polygon above the x-axis
needs to be folded. Each convex vertex of this part in which
the positive y-vector points outside of the cloth in its initial
configuration needs to be held by a gripper at some point
during the manipulation. We denote this set of vertices by
V . Let y∗ be the maximum of the y-coordinates of the ver-
tices in V . Now, we let the baseline, which is parallel to

the x-axis at all times, move ‘down’ with speed 1, starting
at yb = y∗, where yb denotes the y-coordinate of the base-
line. Let the initial planar coordinates of a vertex v ∈ V be
( xv, yv). As soon as the baseline passes yv, vertex v starts
to be manipulated. When the baseline passes −yv, vertex
v stops being manipulated. During the manipulation, the
vertex is held precisely above the baseline. In general, the
three-dimensional coordinate ( x( yb) , y( yb) , z( yb) ) of the
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)b()a(

Fig. 6. (a) The representation of folded stacked geometry. The example shown here is the long-sleeved shirt of Figure 4 after five
g-folds. With each facet, the stack height (integer) and a transformation matrix is stored. (b) Each transformation matrix Fi corresponds
to mirroring the geometry in the line segment specifying the ith g-fold.

gripper holding vertex v as a function of the y-coordinate
of the baseline is given by

x( yb) = xv (1)

y( yb) = yb (2)

z( yb) = yv − |yb| (3)

for yb ∈ [yv,−yv]. Outside of this interval, the vertex is part
of the horizontal part of the cloth and does not need to be
grasped by a gripper. This reasoning applies to all vertices
v ∈ V . When the baseline has reached−y∗, all vertices have
been laid down and the g-fold is completed.

As a result, we do not need to grasp any vertex outside
of V at any point during the manipulation, where V is the
set of vertices that need to be grasped in the configuration
where the part of the cloth that is folded is vertical above the
line segment specifying the g-fold (in this case the x-axis).
At all other points in time the vertical part is a subset that
has exactly the same orientation with respect to gravity, so
the same amount of vertices, or fewer, needs to be grasped.
Hence, the set of vertices that need to be grasped and the
motions of them can be computed in O( n) time.

4.2. Sequences of g-folds and stacked geometry

Here we discuss the case of folding already folded geome-
try. First, we discuss how to represent folded, stacked geom-
etry. Let us look at the example of the long-sleeve T-shirt
of Figure 4, and in particular at the geometry of the cloth
after five g-folds. The creases of the folds have subdivided
the original polygon into facets (see Figure 6(a)). With each
such facet, we maintain two values: an integer indicating
the height of the facet in the stacked geometry (1 is the low-
est) and a transformation matrix indicating how the facet is
transformed from the original geometry to the folded geom-
etry. Each transformation matrix is a product of a subset of
the matrices Fi that each correspond to the mirroring in the
line segment specifying the ith g-fold. In Figure 6(b), we
show the lines of each of the g-folds with the associated
matrix Fi.

Given the representation of the current stacked geometry
and a line segment specifying a new g-fold, we show how
we manipulate the cloth to successfully perform the g-fold

or report that the g-fold is infeasible. We assume that the
line segment specifying the g-fold partitions the silhouette
of the stacked geometry into two parts (i.e. a blue g-fold).
Let us look at the sixth specified g-fold in the long-sleeve
T-shirt example, which folds the geometry of Figure 6.

Each facet of the geometry (in its folded configuration) is
either fully to the left of the line segment, fully to the right,
or intersected by the line segment specifying the g-fold. The
facets intersected by the line segment are subdivided into
two new facets, both initially borrowing the data (the stack
height and the transformation matrix) of the original facet.
Now, each facet will either be folded, or will not be folded.
Figure 7 shows the new geometry in the long-sleeve T-shirt
example after subdividing the facets by the line segment
specifying the g-fold. The gray facets need to be folded.

As in the case of folding planar geometry, for each facet
each convex vertex at which the gravity vector points out-
side of the facet at the time it is above the line segment
specifying the g-fold should be held by a gripper, and each
non-convex vertex or convex vertices where the negative
gravity vector points inside the facet need not be held by a
gripper. If a vertex is part of multiple facets, and according
to at least one facet it needs not be held by a gripper, it does
not need to be held by a gripper.

For the T-shirt example, the vertices that need to be
grasped are shown using dots in Figure 7 and labeled
v1, . . . , v7. Applying the transformation matrices stored
with the incident facet to each of the vertices shows that
v1, v3, v5, and v7 will coincide in the plane. As a gripper
will grasp all layers the geometry, only one gripper is nec-
essary to hold these vertices. Vertex v4 also needs to be held
by gripper. Vertices v2 and v6 remain, but they need not be
grasped. This is for the following reason. As can be seen in
Figure 4, these vertices are fully covered. That is, the ver-
tex is ‘hidden’ behind other facets of the cloth both below
and above it in the stacked geometry. As we assume that
the friction between two pieces of the cloth is infinite, this
vertex will not be able to deform as a result of gravity, and
need not be grasped. Using the heights stored at each facet,
we can compute for each vertex whether it is covered or not.

This defines fully what vertices need to be grasped to
achieve a g-fold of stacked geometry. If any such vertex
is not on the boundary of the silhouette of the stacked
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Fig. 7. The geometry in the long-sleeve T-shirt example after sub-
dividing the facets by the line segment specifying the sixth g-fold.
The gray facets need to be folded. The convex vertices for which
the negative gravity vector points outside of the facet are shown
using dots.

geometry, the g-fold is infeasible (for example, the second
g-fold of Figure 5 (a) is infeasible for this reason). The 3-D
motion of the grippers can be computed in the same way as
for planar geometry, as discussed in Section 4.1. The run-
ning time for computing the vertices that need to be grasped
is in principle exponential in the number of g-folds that pre-
ceeded, as in the worst case i g-folds create 2i facets. If we
consider the number of g-folds a constant, the set of vertices
that need to be grasped can be identified in O( n) time.

After the g-fold is executed, we need to update the data
fields of the facets that were folded in the geometry: each
of their associated transformation matrices is pre-multiplied
by the matrix Fi corresponding to a mirroring in the line
segment specifying the g-fold (F6 in Figure 6(b) for the T-
shirt example). The stack height of these facets is updated
as follows: the order of the heights of all facets that are
folded is reversed, and these facets are put on top of the
stack. In the example of Figure 7, the facets that are folded
have heights 4, 6, 1, and 3 before the g-fold, and heights 8,
7, 10, and 9 after the g-fold, respectively.

The above procedure can be executed in series for a
sequence of g-folds. Initially, the geometry has one facet
(the original polygon) with height 1 and transformation
matrix I (the identity matrix). If a g-fold is specified to only
apply to the folded part of the geometry of the last g-fold
(a ‘red’ g-fold), the procedure is the same, but only applies
to those facets that were folded in the last g-fold. We allow
these kinds of g-folds as a special primitive if they need the
same set of vertices to be grasped as the previous g-fold.
Even if the vertices that are grasped are not on the boundary
of the silhouette of the geometry, the g-fold can be achieved
by not releasing the vertices after the previous g-fold. This
enriches the set of feasible fold primitives.

5. Determining the cloth polygon

The above sections establish a robust framework for manip-
ulating a clothing article given an approximate polygonal
representation of its configuration. In this section, we exam-
ine the problem of visually inferring this representation, by
both classifying which type of clothing article (e.g. towel,

pants, or shirt) is present in a single image, and identi-
fying an annotated polygon by which it can be approxi-
mated when folding. We additionally consider the problem
of visually tracking folds, to gauge progress and accuracy
throughout the folding procedure.

Spread crudely on a table, real-world clothing items
do not perfectly resemble simple polygons. They contain
curves rather than straight lines, corners which are rounded
rather than sharp, and small intricacies which no two arti-
cles of a given class will necessarily share. Rather than
reason explicitly about these complex shapes, we wish to
transpose them as best we can into a shape which we know
how to fold: in our experiments, this will be one of the four
polygons detailed in Figure 12, either spread out or partially
folded.

To do so, we employ a top-down approach to pose esti-
mation: if a particular class of polygon is desired, let the
article’s shape be approximated by the best-fitting instance
of that class, governed by some choice of distance metric.
This draws upon the template-matching approach of Borge-
fors (1988), in which a polygonal template is iteratively
fit to an observed contour. As will be explored in Section
6.2, however, a priori knowledge of clothing structure (for
instance, the symmetry between left and right sleeves) may
be exploited to greatly improve the resulting fit. We there-
fore consider an augmented representation, deemed the
parametrized shape model, which preserves this constrained
internal structure, as well as a scheme for optimizing fit
while incrementally relaxing these constraints.

In Section 5.1 we formalize the notion of a parametrized
shape model. For every clothing category, we attempt to
find a minimal set of parameters which can describe the
range of shapes it may take on. Every legal setting of
these parameters defines a polygon. We call the vertices
of this polygon the landmark points, which may be used
as input to the folding algorithm in Section 4. Figure 8(a)
shows a parametrized shape model for T-shirts as well as
the polygon associated with this particular model instan-
tiation. We further augment this representation to include
folded versions of these articles.

In Sections 5.2 and 5.3 we propose an optimization
strategy for determining the parameters which best fit an
observed contour. In Section 5.4, we demonstrate how this
fit may also be used to classify the clothing article. What
results is a class-level description of the observed clothing
article, and a polygon to represent it.

5.1. Parametrized shape models

We define a model M by the following components:

A landmark generator

MLG : {P ∈ R
p} → {L ∈ R

2×�}

which takes a parameter vector P as input, and returns
the associated collection of landmark points, L.4
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Fig. 8. (a) A parametrized shape model for a T-shirt. Red indicates a skeletal parameter, blue indicates a landmark point. (b) An example
instance. (c) The result from running our approach: our model (pink) is overlayed onto the image of the clothing it is trying to fit. The
determined landmark points are shown as white dots. (d) An example of a parametrized specification of a folding sequence. All fold
lines shown are defined relative to the parametrized shape model. (e) Result from running our approach when a fold line is present.

A contour generator

MCG : {P ∈ R
p} → {C ∈ R

2×c}
which takes a set of scalar parameters P as input, and
returns the contour of the polygon which would arise
from the given parameters, with a fixed number of
samples per side.

A legal input set
ML ⊆ R

p

which define the set of parameters in which M may
reasonably be found.

A transformation operator

MT : {P ∈ R
p, T ∈ R

2, θ ∈ R, s ∈ R} → {P′ ∈ R
p}

which transforms a set of parameters in such a way that
the resultant contour MCG will be translated, rotated, and
scaled by the given values of T , θ , and s.

5.1.1. Skeletal models To capture the structure of the
clothing, we parametrize a model about a set of interior (or
skeletal) points, as well as features which detail the distance
from the interior points to the contour. These may include
landmark vertices, displacements between a skeletal vertex
and its nearest edge, or scalars such as height and width.

Figure 8(a) shows an example skeletal model for a T-
shirt; a more detailed list of the parameters, as well as all
other skeletal models, may be found in Appendix B. The
parameters are highlighted in red, and the landmark points
are highlighted in blue. A red point with a blue outline
indicates a landmark point which is itself a parameter. The
generated contour is outlined in black. The legal input set is
detailed in Appendix B.3.

5.1.2. Folded models Once the pose of the spread-out arti-
cle has been determined, we wish to visually track the
progress and accuracy of our folding procedure. To any
model M0, we may wish to add a single fold line. We thus
define a folded model, such that

Pfolded = [
� | P0

]
M folded

L ≡ R
4 ×M0

L,

where all parameters of the original model P0 are allowed
to vary and, in addition, the parameters � specify a directed
line segment about which the model is to be folded. The
resulting landmark points are computed by folding the poly-
gon specified by M0

LG( P0) about this line. Note that there is
no restriction on what sort of model M0 is. This allows us
to specify folds recursively. If M0 is unfolded, M folded will
contain a single fold. If M0 contains a single fold, M folded

will contain two, and so on.5

If we are certain the clothing article did not move during
a folding operation, we may reduce this task to finding a
single fold line on a known polygon, rather than determin-
ing both simultaneously. We therefore define a static folded
model, such that

Pfolded = [
�

]
M folded

L ≡ R
4.

5.2. Energy function
We now aim to find the parameters which optimally fit a
given image. Our approach extracts the contour of the cloth-
ing article in the image and uses an energy function which
favors contour fit. We define the energy E as follows:

E( P)=( α)×d̄( MCG( P)→ C)+( 1− α)×d̄( C→ MCG( P) ) ,

where d̄( A→ B) is the average nearest-neighbor distance6

from A to B:

d̄( A→ B)≡ 1

|A|
∑
a∈A

argmin
b∈B
‖b− a‖.

The parameter α is used to adjust the way in which the
model fits to the contour. If α is too low, the model will
attempt to fit every point of the contour, often overfitting to
deviations such as wrinkles. If α is too high, the model may
cease to cover the contour at all, fixating instead on a single
portion. We have found that setting α = 0.5 is sufficient to
counter both negative tendencies.

5.3. Energy optimization

Our energy optimization follows a coarse-to-fine strategy,
in which the parameter space begins small and increases
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as the procedure continues. It first only considers transla-
tion, rotation and scale, then considers all parameters but
enforces certain symmetry constraints amongst them, and
finally optimizes over all parameters without the symmetry
constraints.

5.3.1. Initialization
PCA approach To infer the necessary translation, rotation,
and scale, we rely on a principal component analysis (PCA)
of the observed contour, and contour defined by the model.

We first compute the initial model contour as

Mc = MCG( P0) .

We then calculate the centers of mass of the observed
contour and the model contour: co and cm, respectively.
We then compute the relative translation between the two
contours,

T = co − cm.

We then perform PCA to estimate the principal axes
of each contour, denoted by ao and am. We compute the
relative angle between the two axes

θ = arccos( ao · am) .

Finally, for each contour we find the point of intersec-
tion between the top of the contour and its principal axis,
denoted to and tm. We compute the relative scale between
the two contours as

s = ‖to − co‖
‖tm − cm‖ ,

which is approximately the ratio of the heights of the two
contours. The resultant contour Mc( P) will be centered
about co, and scaled and rotated such that to = tm.7

Having computed these three values, we then update our
model estimate such that

P′ ← MT ( P, T , θ , s) .

Multi-angle approach We additionally consider a second
approach, in which the optimization is run with multiple ini-
tializations, attempting all possible rotations within a granu-
larity of δθ . Upon completion, the fitted model which yields
the lowest energy function is chosen, and all others are dis-
carded. The method for choosing translation and scale is the
same as in the PCA approach.

5.3.2. Optimization To ensure the best possible fit, our
standard approach performs the optimization in three
phases: orientation, symmetric, and asymmetric.

In the orientation phase, all parameters are held rela-
tively fixed, with only one external degree of freedom: θ ,
which defines the net rotation of the contour points about
the center of gravity of the model. This phase is only run
when using the PCA-based initialization, and it tends to

improve the orientation estimate as it considers the entire
contour, rather than just its principal component. When
using the multi-angle initialization we found it better to skip
the orientation phase as it reduced the variety of orientations
explored.

In the symmetric phase, the model is free to translate,
rotate, scale, or deform within the limits determined by its
legal input set, as long as left–right symmetry is maintained.
In terms of implementation, this is done by optimizing over
a subset of the model parameters, those which describe the
left and center portions of the model, and computing the
implied values for the remaining right parameters such that
symmetry is enforced.

In the asymmetric phase, all parameters are optimized
over, and the model is free to translate, rotate, scale, or
deform within the limits determined by its legal input set.

For the numerical optimization, we use coordinate-
wise descent over the parameters: evaluating the gradients
numerically (rather than analytically) and maintaining an
adaptive step size for each parameter. This algorithm is
presented in detail in Appendix C.

To enforce legality constraints on the parameters, we
augment the energy function with a penalty for constraint
violation. We first normalize the fit such that

∀P : 0 ≤ Enorm( P) < 1.

To do so, we set

Enorm = E

Emax
.

As a simple upper bound, Emax is set to
√

h2 + w2, where h
and w denote the height and width of the image, respec-
tively. This corresponds to the case in which the two
contours are maximally distant given the size of the image.

We then define the structural penalty S as

S( P)=
{

0 if P ∈ ML,
1 otherwise.

The resulting energy function is then given by

C( P)= Enorm( P)+S( P) .

As the normalized energy Enorm lies between zero and
one, the optimum of the cost function will never violate a
constraint if a legal alternative exists.

5.4. Classification

For any image and specified model, the above procedure
is able to return a set of fit parameters and an associated
energy. By considering the value of the energy function as
a measure of overall model fit, this provides a convenient
means of category classification. When presented with an
image and a set of possible categories, we run the above pro-
cedure multiple times, with one model associated with each
category. The fitted model which results in the lowest final
energy is selected, and the image is classified accordingly.
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Fig. 9. Three of each clothing category were used in conducting
our experiments.

Fig. 10. An example sequence of user-specified folds. The user
first clicks on the left arm pit, then on the left shoulder to specify
the first fold. The program then verifies that this is a valid g-fold
for the chosen number of grippers. In this case it is, and it then
shows the result after executing the g-fold (third image in the top
row). Then the user specifies the next fold by two clicks, the pro-
gram verifies whether it is a valid g-fold, and then shows the result
after executing the g-fold.

6. Experimental results

In this section we describe the experimental verification of
our approach. We begin by validating the reliability of our
g-fold mechanism for folding in Section 6.1, using human
annotated cloth polygons as input. We then evaluate the suc-
cess of our perceptual tools for inferring this polygon in
Section 6.2, run on a hand-compiled dataset of 400 cloth-
ing images. Finally, we combine the two components into
an end-to-end robotic system in Section 6.3.

6.1. Clothing manipulation

We validate the power of our g-fold framework by first
implementing an open-loop laundry folding mechanism on
a household robot. We first describe the setup, and then the
corresponding results.

6.1.1. Experimental setup We used the Willow Garage
PR2 robotic platform developed by Wyrobek et al. (2008).
The PR2 has two articulated seven-axis arms with parallel

Fig. 11. An example folding primitive, automatically executed
on a T-shirt polygon. Note the clean fold, despite the imperfect
symmetry of the original polygon.

jaw grippers. We used a soft working surface, so the rela-
tively thick grippers can easily get underneath the cloth. Our
approach completely specifies end-effector position trajec-
tories. It also specifies the orientation of the parallel jaw
grippers’ planes. We used a combination of native IK tools
and a simple linear controller to plan the joint trajectories.

We experimented with the clothing articles shown in
Figure 9. Whenever presented with a new, spread-out cloth-
ing article, a human user clicks on the vertices of the article
in an image. This specifies the location of the cloth polygon.

To allow for arbitrary fold sequences, we give a human
user the option of manual fold specification. The user is pre-
sented with a graphical representation of the article, and
the ability to draw arbitrary folds. Once a valid g-fold has
been specified, the robot executes the fold, allowing the user
to specify another. Figure 10 illustrates the fold sequence
specification process through an example.

To autonomously execute folds on known clothing cat-
egories, the program is also seeded with a set of fold-
ing primitives. When presented with a particular article of
clothing, the user is given the option of calling one of these
primitives. Once called, a sequence of folds is computed,
parametrized on a number of features such as scaling, rota-
tion, and side lengths. Figure 11 shows an example primi-
tive being executed on a user-defined polygon in the shape
of a shirt. To ensure consistency across multiple trials, such
primitives were used to execute the folds detailed in the
following experimental results section.

While our approach assumes the cloth has zero resistance
against bending, real cloth does indeed resist against bend-
ing. As a consequence, our approach outlined so far over-
estimates the number of grippers required to hold a piece
of cloth in a predictable, spread-out configuration. Simi-
larly, our robot grippers have non-zero size, also resulting
in an overestimation of the number of grippers required. To
account for both of these factors, our implementation offers
the option to allocate a radius to each of our grippers, and
we consider a point being gripped whenever it falls inside
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this radius. To compute the grasp points, we first compute
the grasp points required for point grippers and infinitely
flexible cloth. We then cluster these points using a simple
greedy approach. We begin by attempting to position a cir-
cle of fixed radius in the coordinate frame such that it covers
the maximum number of grasp points, while subsequently
minimizing the average distance from each covered point
to its center. This process is iterated until no point remains
uncovered. For the duration of the fold, our grippers now
follow the trajectory of the center of each cluster, rather than
individual grasp points.

6.1.2. Experimental results We tested our approach on
four categories: towels, pants, short-sleeved shirts, and
sweaters. Figure 12 shows the fold sequences used for each
category. To verify the robustness of our approach, we
tested on three instances of each category of clothing. These
instances varied in size, proportion, thickness, and texture.
At the beginning of each experimental trial, we provided the
PR2 with the silhouette of the polygon through clicking on
the vertices in two stereo images.

Table 1 shows success rates and timing on all cloth-
ing articles. Figure 13 shows the robot going through a
sequence of folds.

As illustrated by the reported success rates, our method
demonstrates a consistent level of reliability on real cloth,
even when the manipulated fabric notably strays from the
assumptions of our model. For instance, the g-fold method
worked reasonably well on pants, despite the material’s
clear violation of the assumption of non-zero thickness, and
a three-dimensional shape which was not quite polygonal.
It was also able to fold a collared shirt quite neatly, despite
that its rigid collar and buttons are not expressible in the lan-
guage of our model. While these elements would likely be
problematic if they intersected a g-fold, they can otherwise
be ignored without issue.

Despite the simplifications inherent to our model, we
have found it to match the behavior of real cloth quite
closely in this setup. While human manipulation of cloth
exploits a number of features which our model neglects,
these features generally arise in states which our model
considers unreachable. That is, handling true fabric often
requires less caution than our g-fold model predicts, but
rarely does it require more. Furthermore, even when unpre-
dicted effects did arise, the final result was often not
compromised.

Although factors such as thickness may cause the cloth to
deviate slightly from its predicted trajectory, most often in
the form of ‘clumping’ for thick fabrics, the resulting fold
generally agrees with the model, particularly after smooth-
ing. Much of our success can be attributed to a number
of assumptions which were very closely met: namely, the
lack of slip between the cloth and the table, and the lack
of slip between the cloth and itself. The former allowed
us to execute g-folds even when the modeled polygon did
not perfectly match the silhouette of the cloth. As actual

articles of clothing are not comprised solely of well-defined
corners, this imprecision often resulted in a non-zero hor-
izontal tension in the cloth during the folding procedure.
However, as the friction between the cloth and the table
far outweighs this tension, the cloth remained static. This
allowed us to stabilize loose vertices by ‘sandwiching’ them
between two gripped portions of cloth. This technique, in
combination with the robust gripping approach detailed
above, allowed us to execute a number of folds (such as
the shirt folds in Figure 12) which more closely resem-
bled their standard human counterpart. With the excep-
tion of long-sleeved shirts, all sequences could theoretically
be executed by a pair of point grippers. However, some
relied on the ability to create perfect 90◦ angles, or pre-
cisely align two edges which (in actuality) were not entirely
straight. Exact precision was impossible in both of these
cases; but where there was danger of gravity influencing
a slightly unsupported vertex, the friction of the cloth,
in conjunction with its stiffness, often kept it in a stable
configuration.

The trials were not, however, without error. Most often,
failure was due to the limitations of our physical control,
rather than a flaw in our model. For instance, 2/2 short-
sleeved failures and 3/4 long-sleeved failures occurred at
steps where the robot was required to grasp a portion of
previously folded sleeve (short-sleeve steps 2 and 4, long-
sleeve steps 3 and 6 in Figure 12). In each of these cases,
the failure could be easily predicted from the location of the
initial grasp. Either the robot did not reach far enough and
grasped nothing, or reached too far and heavily bunched the
cloth. These failures suggest a clear issue with our original
implementation: namely, the reliance on open-loop control.
While the initial position of each vertex is given, the loca-
tion of a folded vertex must be derived geometrically. For
this location to be correct, we must make two assumptions:
that the cloth at hand is perfectly represented by the given
polygon, and that the trajectory, once computed, can be
exactly followed. Clearly, both are idealizations: the former
disregards the multi-layered nature of all but towels (which
saw a 100% success rate) and the latter is hindered by
the inherent imprecision of any robotic mechanism. These
errors greatly entail the need for a perceptual component
which can track folds over time, as detailed in Section 5.1.2
and implemented in Section 6.3.

While overall folds were often executed correctly, the
resulting article often contained minor imperfections, such
as wrinkles. The robot was able to remove many of these
via an open-loop smoothing motion. However, in order to
make the fold truly neat, more advanced manipulations,
such as ironing or precisely targeted smoothing motions,
would most likely be necessary.

6.2. Clothing detection

Using the methods detailed in Section 5, we designed a sys-
tem able to infer the class and pose of a spread-out article of
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Fig. 12. The sequences of folds used in our experiments. Note that the long-sleeved fold is identical to the short-sleeved fold, with
added folds for tucking in the sleeves. This may well be seen as a single primitive, parametrized about the sleeve length.

Fig. 13. The robot folding a T-shirt using our approach.

Fig. 14. The 40 articles of clothing in our dataset.

Table 1. Experimental results of autonomous laundry folding.

Category Success rate Average time (s) Category Success rate Average time (s)

Towels 9/9 200.0 Short-Sleeved Shirts 7/9 337.6
Purple 3/3 215.6 Pink T-Shirt 2/3 332.8
Leopard 3/3 210.9 Blue T-Shirt 2/3 343.2
Yellow 3/3 173.5 White Collared 3/3 337.6
Pants 7/9 186.6 Long-Sleeved Tops 5/9 439.0
Long Khaki 3/3 184.9 Long-Sleeved Shirt 2/3 400.7
Brown 1/3 185.9 Gray Sweater 1/3 458.4
Short Khaki 3/3 189.1 Blue Sweater 2/3 457.8

clothing. To do so, we defined a set of parametrized shape
models which corresponded to each clothing class (Sec-
tion 6.2.1). We then collected a dataset of clothing images
(Section 6.2.2) and verified our detection algorithm on this
dataset (Section 6.2.4).

6.2.1. Models used For each of the four categories
of clothing detailed above, we define an associated
parametrized model: thus, to each article of clothing we
attempt to fit a towel, pants, short-sleeved, and long-sleeved
model. Each model defines a polygon which may be folded
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using one of the primitives detailed in Figure 12. The
parameters and constraints of these models are discussed
in detail in Appendix B.

As a baseline for performance comparison, we also
define a polygonal model which is parametrized about

Ppoly =
[
l1( x) l1( y) . . . l�( x) l�( y)

]
Lpoly ≡ R

2�.

This model has no interior structure, and no legality
constraints beyond self-intersection. For every clothing
category, we construct a polygonal model whose initial
landmark points are identical to those of the skeletal model
for that category. This model provides a useful baseline
for the performance of pure contour fitting, beginning with
the same initialization and optimization techniques, but
without taking any prior knowledge about clothing into
consideration.

6.2.2. Data collection To quantitatively gauge the accu-
racy of our approach, our shape-fitting code was run on
a dataset of roughly 400 images, divided into four cate-
gories: towels, pants, short-sleeved shirts, and long-sleeved
shirts. For each category, 10 representative articles of cloth-
ing were considered. These 40 articles varied greatly in size,
proportion, and style (see Figure 14). Each article was then
further placed in 10 or more poses, encompassing a variety
of common spread-out configurations (see Figure 15).

Each object was initially photographed on a green
table. To ensure rotational invariance, each image was
transformed to a birdseye perspective, using OpenCV’s
checkerboard detector to locate the top-down frame. The
background was then subtracted from each image. For
most of these images, hue thresholding against the green
background was sufficient: however, in cases where the
complex texture of the clothing precluded hue thresholding,
the Grabcut algorithm (Rother et al. 2004) was used to
perform the subtraction, with foreground and background
pixels manually selected by a user. Finally, the location
of each landmark point was hand-annotated, to provide
ground truth data for the model fitting task. The pipeline is
illustrated in Figure 16.

6.2.3. Implementation details We ran our experiments on a
Lenovo Thinkpad, running an Intel Core 2 Extreme Proces-
sor. A typical model fit took roughly 30 seconds; for more
complex procedures such as the four-phase multi-model
approach for T-shirts, convergence would occasionally take
up to 2.5 minutes. To rapidly compute nearest-neighbor dis-
tances for the cost function, the Flann library (Muja and
Lowe 2009) was used. The bulk of the image process-
ing, including transformations, thresholding, and contour
detection, was done with OpenCV (Bradski 2000).

6.2.4. Experimental results Each image was first fit to the
proper model according to its known category. Table 2

Fig. 15. The article of clothing is put in various poses.

Fig. 16. The dataset pipeline. Top left: Initially, the clothing is
spread out on a green table. Top right: A birdseye transformation is
then performed. Bottom left: The image is cropped, and the back-
ground is segmented out. Bottom right: To provide ground truth
for the fitting procedure, the resulting image is hand-annotated.

shows the accuracy of our approach on the 400 image
dataset using both the PCA and multi-angle initializations,
and the performance of the associated polygon model on
the same set. These results are represented pictorially in
Figure 17.

Our approach performs very well, obtaining typical
accuracies of within 8 pixels per landmark point and
significantly outperforming the polygonal approach, the
shortcomings of which are detailed in Figure 19.

Moreover, the relative gain of the skeletal approach on
each category is quite telling. As the towel model is effec-
tively structureless, there is no distinction between the two
models, and hence no improvement. In the case of pants,
the proximity between the two legs frequently caused the
polygonal approach to attract to poor local minima; whereas
the skeletal approach, with its implicit knowledge of struc-
ture, performed quite well. Short-sleeved shirts, being fairly
homogeneous in shape, proved extremely difficult for the
polygonal approach to fit, as can be readily seen in Figure
17. Despite the subtlety of shoulder and collar point loca-
tions, the longer sleeves of sweaters tend to sketch out a
very clear polygonal shape; thus the polygon model per-
formed somewhat reasonably, with most errors centered
about shoulders, collars, and sleeve edges.

The results of the multi-angle approach were extremely
consistent with that of PCA initialization, suggesting that
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Fig. 17. Comparison of individual landmark point errors. The center of the ellipses denotes mean error, and the size and skew their
covariance, projected onto a canonical version of the article. Top: Pointwise error for skeletal models using the PCA approach. Bottom:
Pointwise error for polygon models.

Table 2. Results of fitting our skeletal models to the dataset. Model accuracy is measured as the average pixel distance from the
predicted landmark point to the annotated landmark point.

Category Polygon model Skeletal model (PCA) Skeletal model (multi-angle)
δθ = 10◦

(pixels) (cm) (pixels) (cm) (pixels) (cm)

Towels 2.89± 1.78 0.75± 0.46 2.89± 1.78 0.75± 0.46 2.86± 1.75 0.74± 0.45
Pants 14.91± 35.97 3.88± 9.35 4.23± 1.64 1.10± 0.43 4.13± 1.54 1.07± 0.40
Short sleeved 89.63± 44.88 23.30± 11.67 6.58± 3.14 1.71± 0.82 6.41± 3.05 1.67± 0.79
Long sleeved 14.77± 8.27 3.84± 2.15 7.09± 3.68 1.84± 0.96 8.06± 4.52 2.09± 1.17

the latter approach is sufficient for most purposes. Indeed,
given the inherent ambiguity in landmark location and small
number of examples on which the two differed, any per-
ceived performance advantage would best be attributed to
noise.

We then examined the case of unknown clothing cate-
gory. On 100% of test images, our method was able to
accurately classify the clothing category. The classifica-
tion scheme in Section 5.4 was used to distinguish shirts,
pants, and towels. Thresholding the sleeve length at 35%
the shirt width further distinguished all long-sleeved shirts
from short-sleeved shirts. Therefore, the correct model is
always chosen, and the performance is identical to the
known, tabulated case.

Our approach, however, was not perfect. The location of
collar points proved to be quite ambiguous, and were often
incorrectly identified. Shoulders, while significantly local-
ized by structural constraints, still proved a source of diffi-
culty. Finally, the initialization was poor on a small number
of instances, and in very rare cases could not be recovered
from.

6.3. A combined end-to-end system

We then combined the perception system introduced in Sec-
tion 6.2 with the folding system of Section 6.1 to provide
the Willow Garage PR2 with a closed-loop folding system.
The system runs as follows:

Fig. 18. Example results of our approach on the four categories
of clothing.

• A towel, pair of pants, short-sleeved or long-sleeved
shirt begins spread out on a table in front of the PR2.

• Using the approach detailed in Section 6.2, the PR2
fits a skeletal model to the contour of the observed
article. To avoid grasping virtual points, the landmark
points are then relocated to their nearest neighbor on
the observed contour.

• The PR2 then computes the parametrized fold primitive
corresponding to the newly fit polygon.
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Fig. 19. Failures of the polygon model. Left: Without more
detailed structural information, the model is unable to detect more
subtly defined points, such as the shoulder (detected shoulder
points in red). Right: The unconstrained polygon approach will
generally be attracted to the nearest edge; a poor initialization can
easily ruin it.

Fig. 20. The robot fits a model to the initial configuration, then
tracks each fold in the procedure

• After each fold, the robot then re-examines the article.
It then fits a static folded model to the newly observed
contour, with initial model M0 given by the previously
determined landmark points, and parameters � seeded
by the robot’s intended fold.

• This is repeated until the article is folded.

Preliminary results have shown this approach to work
consistently well, enabling fully automatic folding by the
PR2. As suggested by the perception results in Section 6.2,
the initial polygon detection phase has been able to erad-
icate human input with no notable deterioration in perfor-
mance. Furthermore, the problem of failing to grasp pre-
viously folded portions of cloth, a frequent issue in the
open-loop setup detailed in Section 6.1, is virtually erad-
icated; as errors are tracked the moment they occur, they
are no longer compounded over time. (See Figure 20 for an
example of the tracking process.)

A number of factors, however, continue to hinder com-
plete robustness. Most notably, the fold-tracking system
works best when the view of the camera is stationary. There-
fore, the robot remains stationary during the procedure,
limiting the size of folded articles to the arm span of the
robot. In addition, while grasp imprecision no longer com-
pounds over successive folds, it remains a substantial issue:
particularly on smaller articles, where the error relative to
the size is often fairly high.

Videos of representative successful runs and con-
tinued progress, as well as software implementations
of all aforementioned algorithms are available at
http://rll.berkeley.edu/IJRR2011

7. Conclusion and future work

We proposed a novel take on robotic laundry folding
which averts the high dimensionality inherent to cloth by
determining a set of necessary conditions under which its
behavior is repeatable and known. In so doing, we greatly
simplified the complexity of the system, and showed that
even in this limited subspace, many folding procedures can
be executed.

We further described the steps necessary to execute
folds on polygonal cloth under these conditions, relying
on intuitive geometric reasoning rather than computation-
ally costly planning and simulation. Our experiments show
that (i) this suffices to capture a number of interesting folds
and (ii) real cloth behaves benignly, even when moderately
violating our assumptions.

We also provide an approach that equips a robotic system
with the necessary perception capabilities; namely, the abil-
ity to visually infer a reasonable polygonal representation
of a clothing article present in an image. We show that, via
a model-based optimization approach, the pose and corre-
sponding polygon of many common clothing articles can be
reliably detected.

We experimentally demonstrated that this framework is
capable of enabling a household robot to fold laundry. We
tested the manipulation task in an open-loop setting and
found it to be quite reliable. We tested the visual compo-
nents on a large dataset of images, and found it to be highly
accurate both in its ability to classify and infer the config-
uration of spread out clothing. Finally, we combined the
perception and manipulation tools on a robotic platform,
and give a first look at an end-to-end system for robotic
laundry folding.

Careful inspection of the gripper paths shows that a
single very large parallel jaw gripper would suffice to
execute a g-fold requiring an arbitrary number of point
grippers. We plan to investigate a practical implementa-
tion of this idea for the PR2. However, a large gripper of
this kind would reduce the collision-free workspace volume
significantly.

In this work, the category-level folding primitives are
specified by human users. Owing to the inherently aesthetic
nature of the choice of primitive, such input may well be
necessary. Yet it is interesting to consider the problem of
automating this decision process, to allow for the folding of
previously unseen article types in a reasonable way.

Our work assumes that, via some mechanism, an arbi-
trarily crumpled article of clothing may be spread out on
a table. We are currently working on, and will continue to
explore, a set of primitive actions which accomplish this
task. We also look to expand our approach beyond folding
to the entire laundry system.

Finally, while this work dealt explicitly with the task of
laundry folding, we believe the tools put forth may gener-
alize well beyond this to many deformable object manipu-
lation challenges, such as ironing or bed-making. We hope
that these results will provide another step forward on the
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long road toward the utopian future, where humans are
never again nagged to ‘do their chores’.
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Notes

1. As popularized by the video ‘Japanese way of folding T-
shirts!’ at http://www.youtube.com/watch?v=b5AWq5aBjgE.
Original footage 2006, uploaded to YouTube 2010.

2. While this assumption tends to hold for typical shapes, it is
not always true. An example of where the assumption is not
accurate is for an exotic family of shapes called pinwheels, as
is proven by Bell (2010).

3. Not all folds can be achieved using a g-fold. In terms of
origami, it is only possible to execute a valley fold on an
upright portion of cloth, or a mountain fold on a flipped por-
tion. While this renders many folds possible, more complex
ones, such as reverse folds, cannot be done in this way. See
Balkcom and Mason (2008).

4. In this work, the only information used is the resulting poly-
gon, and hence all articles have landmark points which lie on
the contour. In general, however, there is no reason that this
must be the case: any point, whether virtual or on the contour,
may be considered a landmark.

5. One may wonder why � has four dimensions rather than the
expected two. This is because a fold line is not a line per se.
Rather, it is a directed line segment, which may intersect one
portion of cloth without intersecting another, colinear portion.

6. We additionally considered the use of dynamic time warp-
ing (Needleman and Wunsch 1970; Sakoe and Chiba 1978)
in our distance metric. The results, however, showed little
improvement, so for the sake of simplicity and computational
efficiency, we restrict our approach to nearest-neighbor.

7. Thus described, the PCA approach leaves an ambiguity in
terms of which direction is assumed to be ‘up’ on the principal
axis. To resolve this, we attempt both upright and upside-down
initializations, and choose the minimum-cost result after the
optimization is complete.

8. In all of these models, the preferred representation of parame-
ters was in Cartesian coordinates. We additionally explored
optimizing directly over angles and lengths. In practice,
however, the optimization worked best when all parame-
ters were aperiodic and similarly scaled. Hence, whenever
possible, a length/angle combination was represented by a
two-dimensional point.

9. For the precise numerical constraints of all of our models, see
the attached code at http://rll.berkeley.edu/IJRR2011.
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Appendix A: Proof of Theorem 1

Let us assume for the purpose of the proof that the poly-
gon lies/hangs in the xz-plane, and that gravity points in
the −z direction. The term above refers to having a higher
z-coordinate.

From the work of Bell (2010), we know that a non-
stretchable planar tree is fully immobilized if each node of
the tree of which its incident edges do not positively span
R

2 is fixed. Now, let us define an upper string of a poly-
gon as a maximal sequence of edges of which the extreme
vertices are convex vertices of the polygon, and no part of
the polygon lies above the edges (see Figure 21(a)). A given

polygon P can have multiple upper strings, but has at least
one.

For each upper string it holds that at its convex vertices
the negative gravity vector points outside the polygon. As
these convex vertices are fixed (by a gripper), the entire set
of edges the string consists of is immobilized. This can be
seen by adding virtual vertical edges fixed in gravity point-
ing downward from the non-convex vertices, which make
sure that the non-convex vertices cannot move upward (per
the downward-tendency assumption). The incident edges of
the non-convex vertices now positively span R

2, hence the
entire string is immobilized.

Now, every point of the polygon P that can be connected
to an upper string by a vertical line segment that is fully con-
tained within P is immobilized. This is because this point
cannot move downward per the non-stretchability assump-
tion (note that the upper string is immobilized), and it can-
not move upward per the downward-tendency assumption.
Hence, all such points can be ‘removed’ from P: they have
been proven immobilized. What remains is a smaller poly-
gon P′ (potentially consisting of multiple pieces) for which
immobilization has not been proven (see Figure 21(b)). The
smaller polygon P′ has vertical edges that did not belong
to the original polygon P. The points on these vertical
edges are immobilized, including both incident vertices (of
which the upper one may be a non-convex vertex of P that
is convex in P′), as they vertically connect to the upper
string.

Then, the proof recurses on the new polygon P′, of
which the convex vertices of the upper string(s) need to be
fixed. Note that P′ may have convex vertices that were non-
convex in P. These need not be fixed, as they were already
proven immobilized since they are part of the vertical edge
of P′.

This proves the theorem. Note that convex vertices where
the negative gravity vector points into the polygon will
never be part of an upper string at any phase of the proof,
so they need not be fixed. Also, the recursion ‘terminates’.
This can be seen by considering the vertical trapezoidal
decomposition of the original polygon P, which contains a
finite number of trapezoids. In each recursion step, at least
one trapezoid is removed from P, until the entire polygon
has proven immobilized.

Appendix B: Shape models used

B.1. Towels

As there is little inherent structure to a towel, its skele-
tal model is simply parametrized about the location of its
four vertices. Only one constraint was imposed, which is
common to all of our models:

• The model contour cannot have any self-intersections.

See Figure 22 for details.
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Fig. 21. A polygon with two upper strings shown thick. (b) The
white part of the polygon (including the vertical dashed edges) has
proven immobilized. The grey part remains.

Fig. 22. A towel model has eight total parameters, corresponding
to four skeletal points. These are simply the four corners of the
towel.

B.2. Pants

A skeletal model of pants was devised, whose parameters
are shown in Figure 23.8

We found it was best to give the pants model as much
freedom as possible. Therefore, only a small number of con-
straints were imposed, penalizing extreme deviations from
the norm of:9

• the length of the legs relative to the height of the pants;
• the width of the legs relative to the width of the pants;
• the width of the pants relative to the height.

For the fitting of pants two different initializations were
attempted: the first with the legs virtually straight, and the
second with the legs widely spaced. Both models were fit,
and the one with the lowest final cost function was chosen.

Fig. 23. The pants skeleton is defined by 14 scalar parameters,
corresponding to 6 skeletal points, and 2 scalar values, denoting
the width of each pant leg. The remaining landmark points are
generated as follows: the right corner is an extrapolation of the
distance from the left corner to the top center; the crotch is the top
center mirrored about the axis spanning the left and right joints;
the leg corners are determined by the line perpendicular to the leg
axis, at a distance specified by the leg width.

Fig. 24. A short-sleeved shirt skeleton is defined by 24 parame-
ters, corresponding to 11 skeletal points and 2 scalar parameters
for sleeve width. The remaining landmark points are generated as
follows: the right corner is found by extrapolating the line from the
left corner to the spine bottom; the armpit is determined by extrap-
olating the line from the shoulder to the shoulder joint; the sleeve
corners are determined by the line perpendicular to the sleeve axis,
at a distance specified by the sleeve width.

B.3. Short-sleeved shirts

A skeletal model of short-sleeved shirts was also used,
detailed in Figure 24.

In order to guide the optimization, a number of con-
straints were imposed, restricting:

• the location of the collar points with respect to the neck
and shoulders;

• the location of the shoulders with respect to the armpits;
• the angle between the spine and horizontal axis;
• the relative size and angle of the sleeves;
• the width–height ratios of the sleeves and torso.
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Fig. 25. A long-sleeved shirt skeleton is defined by same param-
eters as the short-sleeved skeleton.

Two different initializations were attempted: the first
with medium-length sleeves, and the second with extremely
short sleeves. Both models were run, and the one with the
lowest final cost function was chosen.

In addition to the orientation, symmetric, and asymmetric
phases of optimization, a fourth fine-tuning phase was run.
In this phase, the location of all sleeve vertices were free
to move, while the rest remained fixed. This was meant to
account for the irregular shape of many T-shirt sleeves.

B.4. Long-sleeved shirts and sweaters

The skeletal model for long-sleeved shirts is detailed in
Figure 25.

This model is virtually identical to the short-sleeved
model, with a single constraint added:

• Each sleeve must be at least twice as long as it is wide.

Only one initialization was used, with the arms at a
downward angle.

As long-sleeved shirts have the potential for drastic
asymmetry, both the orientation and symmetric phases
of optimization proved to be non-useful, and occasionally

damaging, the former settling on erroneous angles, and the
latter on vastly incorrect poses. In some cases, the error was
so great that the asymmetric phase could not correct for it.
For this reason, only the asymmetric phase of optimization
was used on this model.

Appendix C: Black box numerical optimiza-
tion

We employ a simple coordinate descent approach to opti-
mization. For initial input parameters P ∈ R

K , score
function C( P), and initial step size δ:

δ1, · · · , δK ← δ

S← C( P)
for iter← 1 : 100 do

for i ∈ 1 : K do
P′ ← P
P′i ← P′i + δi

S′ ← C( P′)
if S′ > S then

P← P′

S← S′

δi ←−δi ∗ 1.5
else

δi ←−δi

P′ ← P
P′i ← P′i + δi

S′ ← C( P′)
if S′ > S then

P← P′

S← S′

δi ← δi ∗ 1.5
else

δi ← δi ∗ 0.5
if max |δ| < 0.001 then

break
Pout ← P

with Pout the fit parameters.
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