
A Textured Object Recognition Pipeline for Color and Depth Image
Data

Jie Tang and Stephen Miller and Arjun Singh and Pieter Abbeel

Abstract— We present an object recognition system which
leverages the additional sensing and calibration information
available in a robotics setting together with large amounts
of training data to build high fidelity object models for a
dataset of textured household objects. We then demonstrate
how these models can be used for highly accurate detection
and pose estimation in an end-to-end robotic perception system
incorporating simultaneous segmentation, object classification,
and pose fitting. The system can handle occlusions, illumination
changes, multiple objects, and multiple instances of the same
object. The system placed first in the ICRA 2011 Solutions
in Perception instance recognition challenge. We believe the
presented paradigm of building rich 3D models at training time
and including depth information at test time is a promising
direction for practical robotic perception systems.

I. INTRODUCTION

Object recognition in unstructured scenes is a challenging
area of ongoing research in computer vision. One important
application lies in robotics, where the ability to quickly and
accurately identify objects of interest is crucial for general-
purpose robots to perform tasks in unstructured everyday
environments such as households and offices.

The specific problem of perception for robotics has a
number of unique features which differentiate it from other
problems in computer vision. A general object recognition
system needs to deal with a vast number of different objects.
One way of dealing with this is by introducing hierarchy, do-
ing recognition on the category level instead of the instance
level. The challenge of generalizing from a few instances to
an entire category of objects remains difficult, and numerous
benchmarks and challenge problems like Caltech 256 [1] and
PASCAL VOC [2] exist to help drive progress in this area.
By contrast, for a specific robot in a specific environment,
the number of unique objects is relatively small (perhaps on
the order of hundreds). This makes it possible to treat it as
an instance recognition problem, gathering a large amount
of training data per object. In addition, a robot can take
advantage of data from multiple sensing modalities such as
cameras and depth sensors.

Perception for robotics also presents additional challenges
which are not present in category-level object recognition
benchmarks. Real world environments are highly cluttered,
contain many occlusions, and frequently contain five or ten
different objects in the same scene. Robots must often avoid
or manipulate objects in their environment. This means that a
robotic perception system needs to accurately localize objects

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709 {arjun, pabbeel,
jietang, sdmiller,}@eecs.berkeley.edu

after detecting them. Additionally, for a robot to react quickly
to changes in its environment, a robotic perception system
needs to operate in near real time.

In this paper we present an approach for instance recog-
nition and object localization in cluttered everyday scenes
using color images and depth information.

Our system consists of a separate, offline training stage
and an online test stage. During training, we are given color
images and point clouds of each object from multiple views
taken from a Kinect [3] sensor. These images are used to
build a full point cloud from which we construct a 3D mesh
model of the object (Section III-B). Next, we extract local
image features from each training image and register them
to the 3D model to create object models (Section III-C).
Finally, we extract global descriptors from the full point
cloud (Section III-D).

At test time, given a new color image and point cloud (pos-
sibly containing multiple objects), our approach segments the
scene into individual objects by fitting a supporting plane and
using depth information (Section IV-A). For each segmented
object, we generate multiple object hypotheses using our
extracted global and local feature models (Section IV-B). We
then recover the pose of the object using our object models.
(Section IV-D). Finally, we enforce global scene consistency
checks to rule out geometrically incompatible hypotheses and
refine our segmentation, rerunning the detection and pose
recovery steps as necessary. (Section IV-F).

We present experiments (Section V) on a recent Kinect-
based textured object dataset, demonstrating the benefits of
simultaneous segmentation, object detection, and 3D pose
recovery. An earlier version of our system placed first in
the inaugural Solutions in Perception Challenge instance
recognition challenge, held by Willow Garage at ICRA
2011 [4]. Figure 1 shows an example test image and test point
cloud, together with the object detections and localization
made by our pipeline.

II. RELATED WORK

There have been several previously published approaches
to joint object recognition and pose recovery in the literature.
Gordon and Lowe [5] use SIFT features and structure from
motion to register a camera pose against a known object
model. Our work is inspired by the MOPED system by Collet
et al. [6], [7], which uses SIFT features to build sparse,
3D local descriptor representations of textured objects at
training time; at testing time, SIFT features are extracted,
matched, and used to obtain a pose estimate. Our approach
incorporates depth information at multiple stages of the

(a) (b) (c)
Fig. 1. (a) Example test image (b) Example test point cloud (c) Sample object detections.

TABLE I
SUMMARY OF NOTATION

Symbol Description
I ∼ a color image (III-A)
C ∼ a point cloud (III-A)
p ∼ a 6DOF pose for an object (III-A)
y ∼ a training label for an object (III-A)
C ∼ a full object point cloud (III-B)
D ∼ a 3D mesh model (III-B)
x ∼ a 2D point of interest (III-C)
z ∼ a 3D point of interest (III-C)
f ∼ a 128-dimensional SIFT descriptor (III-C)
M ∼ a 3D object model (III-C)
H ∼ global object descriptors (III-D)

processing pipeline. During training we build 3D mesh
models in addition to 3D metric feature representations, and
at test time we use depth to segment objects and verify
scene consistency. Our framework supports additional global
descriptors such as color in the classification process.

A number of different approaches have been presented for
incorporating depth information. Several approaches rely on
extracting feature descriptors from the depth data, including
spin images [8], point feature histograms [9], [10], or his-
tograms of oriented gradients on the depth image [11], [12].

Several recent datasets have been created using the Kinect
sensor to gather color and depth images of household objects.
The textured object training data and testing data used in
this paper comes from the Solutions in Perception challenge
at ICRA 2011 [4]. Lai et al. [11] recently presented a
larger color and depth image dataset for category and object
recognition, containing both textured and untextured objects.

III. MODELING OBJECTS

A. Overview

An overview of our object recognition and pose recovery
pipeline is given in Figure 2. A summary of the notation
used in the remainder of this paper is given in Table I.

At training time, we require a set of NI labeled training
instances ({Ii, Ci}, {pi, yi}), i = 1, ..., NI , where yi speci-
fies an object label, Ii is a color image containing one object,
the object yi, Ci is an associated 3D point cloud containing
position and color information, and pi is the 6DOF pose of
the camera and depth sensor in a known reference frame.

Ideally, for each unique object yl, l = 1, ..., NL, there exist
multiple training instances with yi = yl together covering
all visible areas of the object. Using the image and point
cloud data, we create a 3D point cloud Cyl , a 3D mesh
model Dyl , a 3D object model Myl mapping image features
to 3D locations, and a set of global object descriptors Hyl

(hue histograms) for each of the NL unique objects in our
training set.

B. Building 3D Models

Since we are given the camera pose pi associated with
each image and point cloud pair (Ii, Ci), we can create a
complete 3D point cloud model Cyl by combining the known
camera poses to register all point clouds belonging to object
yl into a single coordinate frame. We then segment away the
table plane and perform Euclidean distance-based clustering
to extract the actual object1, keeping the largest cluster.

This 3D point cloud model Cyl is at best a noisy rep-
resentation of the actual object due to sensor errors and
camera pose measurement errors.2 To address this, we used
an off-the-shelf Poisson surface reconstruction tool [14] to
construct a 3D mesh model Dyl for each object yl. Poisson
reconstruction smoothly regularizes inconsistencies in the
full 3D point cloud and fills in small unobserved gaps in
the model.

C. 3D Object Models

Given the 3D mesh model Dyl , we can use our known
camera poses pi to project Dyl onto each training image
Ii which contains object yl = yi in our training set. This
projection is used as an accurate segmentation mask for the
object.3 After applying the mask to get a segmented image,
we extract 2D SIFT [15] interest points {xir}, r = 1, ..., NR

and associated feature descriptors {fir}, r = 1, ..., NR
4,

and project them onto Dyl to get a 3D location zir =

1We used an off the shelf Euclidean clustering algorithm available in PCL
[13]

2This initial alignment could in principle be improved by aligning the
point clouds using e.g. an iterative closest points (ICP) algorithm, but the
3D mesh modeling process already performs some level of denoising.

3In practice we also include a buffer region of size NSegment around the
edge of the object

4We used OpenCV’s SIFT library in our implementation [16].

Fig. 2. Overview of our training and testing pipelines. Red boxes correspond to steps which make use of point cloud and depth information. Green boxes
correspond to steps which make use of global color information. Blue boxes correspond to steps which make use of local SIFT feature information.

Proj(xir, pi,Dyi).5 We ignore interest points which do not
project onto Dyl .

The collection of all such SIFT descriptor and 3D point
pairs {(zir, fir)} forms an object model Myl which consists
of a sparse collection of 3D locations with associated SIFT
feature descriptors. The SIFT features can be used in a bag-
of-words-style object classifier [18], while the 3D locations
enable fast, accurate pose recovery.

D. Hue Histogram Descriptors

Given the full 3D point cloud Cyl for object yl, we
simulate synthetic views of the point cloud from NJ camera
poses {p̂j}, j = 1, ..., NJ around the object.6 For each
simulated pose p̂j , we construct a global color histogram
descriptor Hj using only points visible from that view. We
first convert RGB to HSV. Points in the cloud which have
very low or very high saturation have unreliable hue readings
and are therefore counted in one of two special low saturation
or high saturation bins, respectively. For points with medium
saturation, we construct a 25-dimensional histogram of hue
values using a soft binning scheme.7

5In practice we precompute the 2D locations of every face in Dyl visible
from camera pose pi, and check to see which face contains xir using a
point-in-polygon algorithm [17]. We then intersect a ray from pi through
xir with the given face to get 3D location zir .

6In practice, we generate synthetic poses 0.5m away from the object, at
36 different azimuths φ from 0 to 2π and 9 different inclinations θ from
π/4 to 3π/4.

7Our soft binning scheme divides the count for a given hue value between
the two closest histogram bins. If x is the hue value, and xi, xj are the
centers of the closest and 2nd closest histogram bins i, j, respectively, we
would add weight x−xi

xj−xi
to bin i and xj−x

xj−xi
to bin j. We normalize the

final hue histogram.

Our final color descriptor is normalized and has 27 dimen-
sions, 25 for hue and 2 for low and high saturation. For each
object yl, the collection of hue histograms Hj for each pose
p̂j forms the global descriptor model Hyl .

IV. OBJECT DETECTION

At testing time, we are given a color image and point cloud
(I, C) (possibly containing multiple objects), and the goal is
to recover the set of labels and poses {yk, pk}, k = 1, ..., NK

for each of the NK objects in the input data. Our system first
segments and clusters the scene into potential objects using
supporting plane and depth information. Next, we extract
local SIFT features and a global hue histogram from the
image, and use a Naive Bayes Nearest Neighbor classifier
to match them against our object models and global color
models {Myl , Hyl}, l = 1, ..., NL. This yields a likelihood
for each potential object label yl. For the best scoring object
label hypotheses, we use the SIFT feature matches and our
3D object models Myl to estimate a pose using RANSAC.
We then run a series of geometric verification steps to match
our learned 3D models Myl ,Dyl against the observed scene.
High probability object detections are removed from the test
image and point cloud. The detection pipeline is repeated
on any remaining object clusters to recover from underseg-
mentation errors. Finally, oversegmentations are handled by
merging together consistent object hypotheses which occupy
the same region of space.

A. Segmentation

Given a color image I and point cloud C of a scene,
we first attempt to locate large planar surfaces in C using
RANSAC [19]. Large planar surfaces are interesting because

we assume objects must be supported by a table or ground
plane. Each candidate plane is represented as a surface
normal plus an offset. If multiple planar surfaces share the
same normal and offset (within a tolerance εPlane), we merge
the two surfaces into one. For each planar surface, we find
what parts of the point cloud (if any) lie above the plane.
All supporting plane hypotheses with more than NPlane points
lying above it are treated as possible supporting planes.

The remainder of the pipeline processes each support-
ing plane hypothesis separately. For each supporting plane
hypothesis, we remove all points which do not lie above
the plane, and run a Euclidean distance-based clustering
algorithm on the remaining point cloud to obtain individual
object point clouds {Cm}, m = 1, ...,M . These point
clouds are reprojected onto the original test image I to
obtain M masked image and point cloud pairs {Im, Cm} as
segmentation candidates for the object classification stage.

B. Object Classification using NBNN

For each test frame, the segmentation phase produces a set
of segmentations {Im, Cm}. For each segmented object we
extract SIFT interest points and descriptors (xmr, fmr) from
the masked image Im, and a hue histogram Hm (Section
III-D) from the point cloud Cm.

We use a Naive Bayes Nearest Neighbor (NBNN) classi-
fier [20] to match the hue histogram and SIFT descriptors
against our trained object models {Myl , Hyl}. The likelihood
of an object label y given a set of descriptors {fr}, H is given
by

P (y|{fr}, H) ∝ P (y)P ({fr}, H|y)
∝ P (H|y)

∏
r

P (fr|y)

Here we have assumed a uniform prior over object la-
bels and that feature descriptors are conditionally indepen-
dent given an object label (the Naive Bayes assumption).
To model P (fr|y), we use kernel density estimation: if
fl1, ..., flNR

are the descriptors in the feature model Myl

for object yl, then

P (fr|yl) =
1

NR

NR∑
i=1

K(fr − fli)

where K(fr−fli) = exp(−‖fr−fli‖22/(2σ2)) is a Gaussian
Parzen kernel function.

The core insight behind NBNN is that SIFT descriptors
are high dimensional and are therefore sparsely distributed
throughout the space. Since the kernel function K(·) drops
off exponentially with distance, the distance between fr
and its nearest neighbor flNN(r) can be used to compute
an efficient approximation of P (fr|yl). Therefore, the log
likelihood of each object label can be computed as

logP (yl|{fr}, H) = α‖H−HlNN‖22+
∑
r

‖fr−flNN(r)‖22

where flNN(r) = argmini ‖fr−fli‖22 is the nearest neighbor
to fr in Myl (HlNN is defined analogously for the hue
histogram descriptor). The above log-likelihood allows us
to create a ranked list of the most likely object hypotheses
{ymn}, n = 1, ..., NSIFT for each input segmentation m.

C. Pose Recovery

For each of the NSIFT most likely object hypotheses, we
next determine the most likely corresponding 6DOF pose.
Given an object hypothesis yl, for each of the SIFT interest
points and descriptors (xmr, fmr) extracted from the color
image Im, we first find the nearest neighbor flNN(r) of fmr

in our 3D object model Myl . Since each descriptor flNN(r)

has a corresponding 3D location zlNN(r), this lets us match
each 2D interest point xmr with its true 3D location zlNN(r).

If we knew the true pose pm of the object, it would satisfy
xmr = Proj(zlNN(r), pm), i.e. each 2D interest point xmr is
the projection of the 3D location zlNN(r) onto the image
plane of a camera located at pm.

However, because we may have incorrect 2D to 3D
matches, instead of looking for an exact matching pose, we
find the pose pm which minimizes the squared error between
our 2D points and the 2D reprojections of the corresponding
3D locations. More concretely, if we let x = Proj(z, p) be
the 2D projection of a 3D point z onto the image plane given
by camera pose p, our optimization problem becomes:

pm = min
p

∑
r

‖xmr − Proj(zlNN(r), p)‖22 (1)

This problem is nonlinear because of the projection operator.
We solve this using a Levenberg-Marquardt nonlinear least
squares algorithm [21], [22].8

Because we use nearest neighbors in SIFT descriptor space
to generate our 2D / 3D correspondences, some of our
correspondences are likely to be incorrect. We account for
this using RANSAC. For each iteration of RANSAC, we
solve Equation (1) on a random subset of our 2D / 3D
correspondences. For each pose pm, we count the number of
correspondences which are explained by pm by evaluating

f(pm) =
∑
r

1(‖xmr − Proj(zlNN(r), pm)‖22 < εRANSAC)

and retain the pose pm with the highest number of matching
correspondences after NRANSAC iterations.

D. Geometric Pose Verification

Following the pose fitting step, each candidate pose
{(ymn, pmn)} (where (ymn, pmn) corresponds to the nth
candidate object label and pose for the mth segmentation) is
subject to a geometric pose verification step which attempts
to account for SIFT features present in the image Im which
were not matched to the label ymn. We project the 2D
locations xmr of all SIFT features fmr detected in Im onto

8In practice, we use a fixed position (0,0,1) and a random quaternion
whose components are chosen uniformly ∈ [−1, 1] as the initial guess for
Levenberg-Marquardt optimization.

the 3D object model Dymn (using our candidate pose pmn)
to obtain a 3D position zmr for each descriptor fmr. This
includes SIFT features which did not match the object during
the initial pose recovery step. We then search the 3D object
model Mymn for a 3D feature point / SIFT descriptor pair
(zmnr, fmnr) such that zmr lies within a local neighborhood
of zmnr and fmr lies within a local neighborhood of fmnr.9

Poses are sorted by the number of matches between the 3D
positions of the test image features and the 3D object model.

The intuition for this pose verification step is to ensure
that most SIFT features found in the image can be explained
by the given object and pose hypothesis. This allows us to
correct for SIFT features which were incorrectly matched
during the initial classification step. It also helps reject errors
in object classification and pose recovery.

The output of the pose verification step is a pose hypoth-
esis (ym, pm) for segmentation m. We run a final round
of Levenberg-Marquardt pose optimization on pm (Equation
(1)) using all consistent 2D / 3D feature matches.

If multiple object hypotheses (ymn, pmn) pass the geo-
metric pose verification test, we take the object hypothesis
(ym, pm) which yields the most consistent 2D / 3D feature
matches in the test image Im.

E. Recovering from Undersegmentation

Undersegmentations result in a candidate object which
actually consists of several objects contained in the same
cluster. When this occurs, the classification and pose verifi-
cation steps can match only one of the objects correctly.

To amend this, after we have finalized our correct object
hypotheses ym we remove the points in the test point cloud
C contained in the bounding volume of any object. We then
re-segment the modified point cloud C ′ to get new candidate
objects {I ′m, C ′

m}, and run them through the classification,
pose-fitting, and geometric verification stages of our pipeline.

F. Scene Consistency

After all candidate objects {Im, Cm} have been processed,
our system checks all accepted object hypotheses (ym, pm)
for overlaps. If two hypotheses have the same object label,
and their bounding volumes overlap, we merge the two
hypotheses by keeping the pose with more consistent SIFT
feature matches. This helps eliminate spurious matches due
to oversegmentation, where an object that is split into two
object clusters generates two object hypotheses with roughly
equivalent poses. We do not modify object hypotheses which
overlap but do not share the same object label.

In addition, a separate check ensures that each object
hypothesis (ym, pm) is consistent with the original point
cloud C.10

Fig. 5. Cumulative histogram of the rank of the true object after global
and local feature matching but before geometric pose verification on the
Willow challenge dataset. The true object lies in the top 15 over 95% of
the time.

V. EXPERIMENTS

A. Datasets

We evaluated our training and testing pipeline on two
textured household object datasets (which we refer to as
Willow and Challenge) and one synthetic textured object
dataset (which we refer to as NIST) used for the Solutions
in Perception Challenge [4]. The household object datasets
contained 35 rigid, textured, household objects provided by
Willow Garage (Figure 3). These objects were imaged using
a Kinect sensor on a calibrated turntable rig, providing 360
degree coverage at a single azimuth angle. The Willow
household object data set was released before the competition
and contained roughly 1000 training instances. Each instance
consisted of a Kinect point cloud, a color image, and a
ground truth pose for a particular object at a particular
azimuth. The Willow dataset also contained roughly 500
test instances consisting of Kinect point clouds and color
images. Each of these frames contained multiple objects.
The Challenge dataset was used for the challenge itself,
and also contained roughly 1000 training instances of the
same 35 household objects as the Willow dataset, together
with 120 test instances (Kinect frames) containing a total
of 434 objects. Finally, the synthetic textured object dataset
consisted of 15 synthetic textured objects provided by NIST
(Figure 4). This NIST dataset was used only for the challenge
and consisted of 450 training instances (Kinect frames, color
images, and ground truth pose of a single object) and roughly
400 test instances containing 831 object instances.

9More precisely, we require that ‖zmnr − zmr‖22 ≤ εPose and
‖fmnr − fmr‖22 ≤ εFeature.

10This is done by projecting the 3D bounding volume of each object
hypothesis onto the observed test image. A percentage PA of the area of
the image occupied by the projection of the 3D bounding volume must
also be occupied by the projection of the observed point cloud. For our
experiments we use PA = 30%.

Fig. 3. Five of the thirty-five textured household objects from the Willow and Challenge dataset [4].

Fig. 4. Five of the fifteen synthetically made NIST challenge objects.

Figure V-B shows some examples of the test data for both
Willow and NIST datasets. 11

Building a single object model using our training pipeline
on 35 training image / point cloud pairs takes about 7
minutes.12 Running our object recognition pipeline on a
single color image / point cloud pair (with a 35 object
database) takes about 20 seconds. All tests were run on a
6-core 3.2GHz Core i7 with 24GB of RAM.

B. Instance Recognition

We first evaluate the performance of our pipeline in a
single object recognition and pose recovery setting. For
this experiment, we used the training data from the Willow
dataset to build our object models, and the training data from
the Challenge dataset as the test set. Each frame of the test
set contains exactly one object in an unknown pose.

Our detection pipeline achieved a precision of 96.72%
at a recall of 97.44% at this task. Out of the 35 house-
hold objects, 23 were correctly detected 100% of the time.
For the other 12 objects, Table II shows the object-object
confusion matrix. The vertical axis shows the true object
label, and the horizontal axis shows the label our algorithm
reported. Entries along the diagonal represent the percentage
of correct classifications; off-diagonal entries represent mis-
classifications.

C. Multiple Instance Recognition

We also evaluate the performance of our pipeline on
the Willow, Challenge, and NIST testing data. Each of the
test sets can contain multiple objects in the same frame.
We report our precision-recall results in Table III as Wil-
low, Challenge, and NIST respectively. We also report the

11For all of our experiments, we used the following parameter set-
tings: NSegment = 15, εPlane = 0.1, NPlane = 100, α = 2, NSIFT =
15, εRANSAC = 16, NRANSAC = 750, εFeature = 0.5, εPose = 0.25cm

12About 95% of the time is spent building the 3D object model (extracting
SIFT interest points and descriptors and determining their 3D location).

precision and recall of our older version, which was the
winning entry to the Solutions in Perception challenge at
ICRA 2011 on the Challenge dataset. Our contest entry
did not handle multiple table hypotheses, lacked the final
scene consistency check, and did not attempt to recover from
undersegmentation.

The Willow test set was significantly more difficult than
the Challenge test set. Many test frames contained 6 different
objects, creating more instances of partially occluded objects,
distractor objects which were not part of the training data,
and objects lacking in distinctive texture. The actual dataset
used in the challenge was hand-curated to only contain
objects with significant texture.

Our current algorithm performed the best on the NIST test
set. The presence of distinctive synthetic color and texture
on the NIST objects makes it an easier benchmark than the
real world Willow objects.

Our current algorithm also performs very well for object
recognition for textured household objects, achieving preci-
sion and recall rates above 90% for challenging scenes with
multiple objects and occlusions.

Figure 7 shows a histogram of our translation and rotation
errors for correct detections on the Challenge dataset. Our
approach excels at accurately recovering pose, consistently
yielding translation and rotation errors of under 5cm and 10
degrees.13

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an end-to-end instance
recognition approach for textured objects. Our system ex-
ploits depth information at training by constructing 3D mesh
and feature models, and verifying object hypotheses by
matching them against the observed geometry during testing.

13The evaluation metric used for the ICRA 2011 challenge weighted
precision, recall, and pose error together into a single number. See the
Solutions in Perception website [4] for more details.

TABLE II
CONFUSION MATRIX FOR THE SINGLE OBJECT INSTANCE RECOGNITION EXPERIMENT. RESULTS ARE REPORTED FOR THE THIRTY-FIVE WILLOW TEST

OBJECTS. THE VERTICAL AXIS SHOWS THE TRUE OBJECT LABEL, AND THE HORIZONTAL AXIS SHOWS THE LABEL OUR ALGORITHM REPORTED.
MISSING OBJECT LABELS WERE CORRECTLY DETECTED 100% OF THE TIME.

1 3 4 5 6 7 10 11 13 16 17 20 23 24 25 27 29 30 31 32 33 34 35
1 98.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0
3 0 98.6 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 1.4 98.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 98.4 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6
17 0 0 0 2.8 0 0 0 0 0 2.8 87.8 1.9 0 0 0 0 0 1.9 0 0 0 0 2.8
20 0 0 0 0 0 1.7 0 0 0 0 0 93.2 0 0 0 0 0 0 1.7 0 3.4 0 0
24 0 0 0 0 0 1.4 0 0 1.4 0 0 0 0 94.4 0 0 0 1.4 0 0 0 0 1.4
25 0 0 0 0 0 0 0 0 0 0 0 0 2.7 0 97.3 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 94.3 0 0 0 0 4.3 0
30 0 0 3.3 0 0 0 0 0 3.3 0 0 0 0 0 0 0 0 93.4 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 97.2 0 1.4 0
33 1.4 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 96.8 0.9 0

(a) (b) (c) (d) (e) (f)
Fig. 6. Sample test data for the NIST (a), (b) and Willow (c), (d), (e), (f) data sets.

(a) (b)
Fig. 7. Histograms of localization errors on the challenge data set for (a) rotation (b) translation. Results are reported for the contest entry on the Challenge
data set.

This paradigm for incorporating depth information allows
us to incorporate invariance to 3D transformations into the
training procedure, and allows for effective, practical instance
recognition. Taking this approach further, we would like to
investigate extensions to non-rigid or textureless objects. We
would also like to investigate high fidelity 3D rendering
approaches to verification.

VII. ACKNOWLEDGMENTS

This work was supported in part by NSF under award IIS-
0904672 and by Intel. J.T. was supported by the Department
of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program. We
thank Ziang Xie for his contributions.

REFERENCES

[1] G. Griffin, A. Holub, and P. Perona. The Caltech-256. Technical
report, California Institute of Technology, 2007.

TABLE III
PRECISION AND RECALL RESULTS FOR THE CURRENT PIPELINE AND

THE ICRA 2011 CONTEST ENTRY.

Precision Recall

Willow (Current System) 88.75% 64.79%
Challenge (Current System) 98.73% 90.23%
NIST (Current System) 97.24% 97.70%
Challenge (ICRA 2011 Contest) 95.30% 84.10%

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge
2010 (VOC2010) Results. http://www.pascal-network.
org/challenges/VOC/voc2010/workshop/index.html.

[3] Microsoft Kinect. http://www.xbox.com/en-us/kinect.
[4] Solutions in Perception Instance Recognition Challenge, ICRA

2011. [web page] http://opencv.willowgarage.com/
wiki/SolutionsInPerceptionChallenge.

[5] Iryna Gordon and David G. Lowe. What and Where: 3D Object
Recognition with Accurate Pose. In Jean Ponce, Martial Hebert,
Cordelia Schmid, and Andrew Zisserman, editors, Toward Category-
Level Object Recognition, volume 4170 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2006.

[6] Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave
Ferguson. Object Recognition and Full Pose Registration from a Single
Image for Robotic Manipulation. In IEEE International Conference
on Robotics and Automation, pages 48–55, Kobe, May 2009. IEEE.
Best Vision Paper Award Finalist.

[7] Manuel Martinez Torres, Alvaro Collet Romea, and Siddhartha Srini-
vasa. MOPED: A Scalable and Low Latency Object Recognition and
Pose Estimation System. In Proceedings of ICRA 2010, May 2010.

[8] A.E. Johnson and M. Hebert. Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 21(5):433 –449, may 1999.

[9] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast Point
Feature Histograms (FPFH) for 3D Registration. In The IEEE
International Conference on Robotics and Automation (ICRA), Kobe,
Japan, 05/2009 2009.

[10] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu.
Fast 3D Recognition and Pose Using the Viewpoint Feature His-

tograms. In Proceedings of the 23rd IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
10/2010 2010.

[11] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A Large-Scale
Hierarchical Multi-View RGB-D Object Dataset. In The IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai,
China, 05/2011 2011.

[12] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. volume 1, pages 886–893, 2005.

[13] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In International Conference on Robotics and Automation,
Shanghai, China, 2011 2011.

[14] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
Surface Reconstruction. In Alla Sheffer and Konrad Polthier, editors,
Symposium on Geometry Processing, volume 256 of ACM Inter-
national Conference Proceeding Series, pages 61–70. Eurographics
Association, 2006.

[15] David G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60(2):91–110,
2004.

[16] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[17] W. Randolph Frankin. PNPOLY - Point Inclusion in Polygon
Test. [web page] http://www.ecse.rpi.edu/Homepages/
wrf/Research/Short_Notes/pnpoly.html, Dec. 2009.

[18] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[19] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus:
A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography. Commun. ACM, 24(6):381–395, June
1981.

[20] Oren Boiman, Eli Shechtman, and Michal Irani. In Defense of Nearest-
Neighbor Based Image Classification. In CVPR. IEEE Computer
Society, 2008.

[21] Jorge Moré. The Levenberg-Marquardt Algorithm: Implementation
and Theory. In G. Watson, editor, Numerical Analysis, volume 630
of Lecture Notes in Mathematics, pages 105–116. Springer Berlin /
Heidelberg, 1978. 10.1007/BFb0067700.

[22] M.I.A. Lourakis. levmar: Levenberg-Marquardt Nonlinear Least
Squares Algorithms in C/C++. [web page] http://www.ics.
forth.gr/˜lourakis/levmar/, Jul. 2004. [Accessed on 31
Jan. 2005.].

